Process for the preparation of isoolefin copolymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S158000, C526S142000, C526S335000, C502S103000, C502S125000, C502S128000

Reexamination Certificate

active

06677421

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides a novel process for the preparation of isoolefin copolymers in the presence of zirconium halides and/or hafnium halides and organic acid halides, in particular for the preparation of higher isoprene-containing butyl rubbers, as well as isoolefin copolymers constructed of isobutene, isoprene and optionally further monomers.
BACKGROUND OF THE INVENTION
The process currently used for the preparation of butyl rubber is known, for example, from Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 23, 1993, pp. 288 to 295. The cationic copolymerization of isobutene with isoprene in the slurry process with methyl chloride as the process solvent is carried out with aluminum trichloride as an initiator with the addition of small quantities of water or hydrogen chloride at −90° C. The low polymerization temperatures are necessary in order to obtain molecular weights sufficiently high for rubber applications.
It is in principal possible to compensate for the molecular weight-lowering (=regulating) effect of the dienic comonomers by even lower reaction temperatures. However, in this case there is a more marked occurrence of the side reactions which lead to gel formation. Gel formation at reaction temperatures of around −120° C. and possible ways of reducing it are described (q.v. W. A. Thaler, D. J. Buckley, Sr., Meeting of the Rubber Division, ACS, Cleveland, Ohio, May 6th to 9th, 1975, published in Rubber Chemistry & Technology 49, 960 to 966 (1976)). On the one hand, of the auxiliary agents which are necessary here, such as CS
2
, is difficult, and they must furthermore be utilized at relatively high concentrations.
The gel-free copolymerization of isobutene with various comonomers at temperatures of around −40° C. with the use of preformed vanadium tetrachloride to obtain products having molecular weights sufficiently high for rubber applications is additionally known (EP-A1-0 818 476).
U.S. Pat. No. 2,682,531 describes zirconium tetrachloride-ether complexes and the use thereof as catalysts for the polymerization of, inter alia, isoolefins. It is emphasized in column 2, line 20 et seq. that the use of zirconium tetrachloride alone leads to unsatisfactory results. The ether which is preferably used is &bgr;,&bgr;′-dichloroethyl ether, a carcinogen. The diphenyl ether which is likewise listed as an example results in poorly soluble complexes which have sufficient activity only at very high dosing levels. Diethyl ether (named specifically in the patent as a possible ether) results in completely ineffective complexes.
The older application DE-A-100 42 118 describes a process for the preparation of isoolefin copolymers with the use of initiator systems prepared from zirconium halides or hafnium halides in the presence of organic nitro compounds. While these initiator systems permit the preparation of highly unsaturated butyl rubbers, for example, they have the disadvantage that it is very difficult in practice to use organic nitro compounds on a large industrial scale on account of the associated explosion hazard.
SUMMARY OF THE INVENTION
The object of the present invention was to provide a process for the preparation of high molecular weight low-gel isoolefin copolymers, in particular, for the preparation of butyl rubbers having more than 2% isoprene in the polymer without the use of nitro compounds.
The present invention provides a process for the preparation of high molecular weight isoolefin copolymers in the presence of zirconium halides and/or hafnium halides, wherein the polymerization takes place in the presence of organic acid halides.
DETAILED DESCRIPTION OF THE INVENTION
The process is preferably utilized with isoolefins having 4 to 16 carbon atoms and dienes which are copolymerizable with the isoolefins, optionally in the presence of further monomers which are copolymerizable with the monomers. More preferably, isobutene and isoprene are utilized, optionally in the presence of further monomers which are copolymerizable with these.
The process is preferably carried out in a solvent which is suitable for cationic polymerization, such as halogenated and non-halogenated hydrocarbons or mixtures thereof, in particular chloroalkanes and chloroalkane/alkane mixtures, more preferably, methyl chloride and methylene chloride or mixtures thereof with alkanes.
The zirconium halide and/or hafnium halide is preferably mixed with the organic acid halide in the absence of the monomer.
The organic acid halides which are utilized are commonly known and are available generally. The acid halides preferably used according to the present invention are defined by the general formula (I)
R-COX  (I),
wherein R is selected from the group of C
1
-C
18
-alkyl, C
3
-C
18
-cycloalkyl and C
6
-C
24
-cycloaryl.
C
1
-C
18
-alkyl is understood to mean any of the linear or branched alkyl radicals having 1 to 18 C atoms, which are known to those skilled in the art, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, neopentyl, hexyl and the further homologues, which may for their part be in turn substituted. Here, alkyl, as well as cycloalkyl or aryl, such as benzyl, trimethylphenyl, ethylphenyl, are in particular, considered as substituents. Linear alkyl radicals having 1 to 18 C atoms, more preferably methyl, ethyl and benzyl, are preferred.
C
6
-C
24
-aryl is understood to mean any of the mononuclear or polynuclear aryl radicals having 6 to 24 C atoms, which are known to those skilled in the art, such as phenyl, naphthyl, anthracenyl, phenanthracenyl, and fluorenyl, which may for their part in turn be substituted. Here, alkyl, as well as cycloalkyl or aryl, such as toloyl and methylfluorenyl, are in particular considered as substituents. Phenyl is preferred.
C
3
-C
18
-cycloalkyl is understood to mean any of the mononuclear or polynuclear cycloalkyl radicals having 3 to 18 C atoms, which are known to those skilled in the art, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the further homologues, which may for their part be in turn substituted. Here, alkyl, as well as cycloalkyl or aryl, such as benzyl, trimethylphenyl, ethylphenyl, are, in particular, considered as substituents. Cyclohexyl and cyclopentyl are preferred.
The radical X stands for the halogens: fluorine, chlorine, bromine and iodine. X preferably stands for chlorine.
The concentration of the organic acid halide in the reaction medium is preferably within the range 1 to 500 ppm, more preferably within the range 10 to 100 ppm. The molar ratio of acid halide to zirconium and/or hafnium is preferably within the range 0.5 to 50, more preferably within the range 1 to 30 and most preferably within the range 2 to 10.
The polymerization of the monomers generally takes place in a cationic manner at temperatures within the range −120° C. to +20° C., preferably within the range −95° C. to −20° C., and at pressures within the range 0.1 to 4 bar.
Suitable zirconium halides and/or hafnium halides are, for example, zirconium dichloride, zirconium trichloride, zirconium tetrachloride, zirconium oxydichloride, zirconium tetrafluoride, zirconium tetrabromide and zirconium tetraiodide, hafnium dichloride, hafnium trichloride, hafnium oxydichloride, hafnium tetrafluoride, hafnium tetrabromide and hafnium tetraiodide and hafnium tetrachloride. Zirconium halides and/or hafnium halides having sterically demanding substituents such as, for example, zirconocene dichloride or bis-(methylcyclopentadienyl)zirconium dichloride, are generally unsuitable. Zirconium tetrachloride is preferably utilized. This may be utilized advantageously in the form of a solution in an anhydrous, acid-free alkane or chloroalkane or a mixture of the two, having a zirconium concentration of less than 4 wt. %. It may be advantageous to store (age) the zirconium solution at room temperature or below for a period of from a few minutes to 1,000 hours before utilization. It may be advantageous to car

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the preparation of isoolefin copolymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the preparation of isoolefin copolymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of isoolefin copolymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3213535

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.