Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters
Reexamination Certificate
1998-09-09
2001-04-03
Keys, Rosalynd (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carboxylic acid esters
C560S080000, C560S098000, C560S099000, C560S100000, C203S071000, C203S073000, C203S080000, C203S088000, C203S099000, C203SDIG009, C203SDIG001
Reexamination Certificate
active
06211398
ABSTRACT:
FIELD OF THE INVENTION
This invention pertains to a process for the preparation of diesters of naphthalenedicarboxylic acids which are useful for preparing a variety of polyesters and polyamides. More specifically, this invention pertains to a process for the preparation of dialkyl naphthalenedicarboxylates wherein a crude naphthalenediacarboxylic acid is esterified with an alkanol such as methanol to produce a crude esterification product comprising dialkyl naphthalenedicarboxylate, starting materials and other compounds and the crude esterification product is purified by flash distillation to remove impurities which can cause fouling of conventional distillation equipment. A particularly useful diester is dimethyl 2,6-naphthalenedicarboxylate (2,6-NDC) which can be transesterified with ethylene glycol and the resulting ester can be polycondensed to make poly(ethylene-2,6-naphthalenedicarboxylate) (PEN) which can be formed into fibers, films and packaging materials with superior strength and barrier properties. To be acceptable as a starting material for PEN, 2,6-NDC should be substantially free of color bodies and other impurities.
BACKGROUND OF THE INVENTION
2,6-NDC is conveniently formed by the esterification of crude 2,6-naphthalenedicarboxylic acid (2,6-NDA) with methanol. Crude 2,6-NDA typically is contaminated with a variety of by-products such as trimellitic acid (TMA), brominated naphthalene compounds, and 6-formyl-2-naphtbalenecarboxylic acid (FNA). The heavy metals such as cobalt and manganese used to catalyze the oxidation of 2,6-dimethylnaphthalene to 2,6-NDA form insoluble complexes, particularly with the TMA, and typically are included in the crude 2,6-NDA in excess of 1,000 ppm. The insoluble heavy metal complexes form deposits and foul heat exchangers in the esterification process, leading to frequent process interruptions for cleaning and maintenance. It is advantageous to remove the heavy metal contaminants at an early stage in the process to avoid problems in operations.
U.S. Pat. Nos. 5,254,719 and 5,095,135 disclose the use of sulfuric acid as a catalyst to esterify 2,6-NDA to 2,6-NDC. Sulfuric acid is effective at a relatively low temperature, e.g., about 130° C., and it reacts with the heavy metal impurities to form soluble sulfate salts. Disadvantages of sulfuric acid-catalyzed esterifications include corrosion of the reactor and the yield loss of methanol to dimethyl ether. Disposal of waste sulfates is another problem with the use of sulfuric acid catalysts. In addition, the reaction usually is carried out well under the melting point of 2,6-NDC (about 200° C.) to minimize or avoid the above mentioned problems with corrosion and dimethyl ether formation. Thus, the reaction is run in methanol solvent, resulting in a larger vessel for a given residence time relative to a reaction in which the excess methanol is substantially removed in the vapor phase.
U.S. Pat. Nos. 4,003,948 and 5,350,874 and Japanese Unexamined Patent Application (Kokai) 7-233123 disclose processes wherein the esterification is operated at higher temperatures with or without a metallic esterification catalyst. This method has the advantage of reduced dimethyl ether formation and corrosion. Disadvantages include generally higher pressure with no provision to reduce fouling by residual oxidation catalyst metals on heat exchanger or reactor surfaces. Without a provision to recycle incompletely esterified 2,6-NDA to the reactor, it is desirable to run the reaction at a high conversion. In a single backmixed reactor, high conversions are achieved at the expense of increased residence time and larger, more expensive reactors. Methods to narrow the residence time distribution, such as multiple reactors in series or devices to approach a tubular reactor like that disclosed in U.S. Pat. No. 5,350,874, are more expensive and add additional complexity to parts of the process subject to fouling. In the process disclosed in Japanese Unexamined Patent Application (Kokai) 7-233123, the 2,6-NDC is distilled following the reactor and methanol stripper, but the 2,6-NDC distillation is done under vacuum, and there is no provision to recycle partially converted 2,6-NDA. To avoid fouling in the distillation column base heater, it is necessary to dilute the residual oxidation catalyst metals with valuable 2,6-NDC, monomethyl ester of 2,6-naphthalenedicarboxylic acid (2,6-MHN), and 2,6-NDA, thus reducing the yield of 2,6-NDC. It is also necessary to operate the reactor at a high conversion to 2,6-NDC as there is no provision for concentration of the 2,6-NDC in the distillation.
U.S. Pat. No. 3,227,743 addresses some of these problems as they apply to the esterification of terephthalic acid (TPA) with methanol to produce dimethyl terephthalate (DMT) by operating a bubble column reactor under conditions such that the DMT product is removed as a vapor with excess methanol and the water of reaction. The lower vapor pressures of 2,6-DNC and the impurities present in crude 2,6-NDC have until now prevented a direct application to 2,6-NDC. There remains a need in the art for an efficient process for the manufacture of 2,6-NDC that minimizes fouling, operates at high rates, and presents a distilled product free of residual oxidation catalyst metals and other high boilers to a final purification process.
SUMMARY OF THE INVENTION
The present invention provides a novel process for the esterification of crude naphthalenedicarboxylic acids, preferably 2,6-NDA, to produce the corresponding esters, notably 2,6-NDC. Thus, my novel process provides a means for the manufacture of a dialkyl ester of a naphthalenedicarboxylic acid (NDC) which comprises the steps of:
(1) feeding an alkanol and a naphthalenedicarboxylic acid (NDA) to an esterification zone which is maintained at a temperature of about 200 to 350° C. to obtain a crude esterification product comprising alkanol, water, NDC, monoalkyl ester of naphthalenedicarboxylic acid (MHN), NDA, trialkyl trimellitate (TATM) and catalyst residues;
(2) removing liquid and vapor streams comprising crude esterification product from the esterification zone;
(3) reducing the pressure of the liquid and vapor streams of step (2) and feeding the streams to the lower section of a primary flash distillation column to produce (i) an overhead vapor stream rich in the NDC, alkanol and water and (ii) a column base underflow stream rich in NDA, MHN and NDC;
(4) recycling a major portion of the underflow stream of step (3) to the esterification zone;
(5) feeding a minor portion of the underflow stream of step (3) to a secondary flash vessel to produce a (i) vapor stream comprising NDC, MHN and NDA and (ii) liquid residue stream comprising TATM, catalyst residues, NDC, MHN and NDA; and
(6) feeding the overhead vapor stream from step (3) and the vapor stream from step (5) to the mid-section of a second distillation column to obtain (i) an overhead vapor stream rich in alkanol and water and (ii) a column base underflow stream rich in NDC and essentially devoid of alkanol and water,
wherein all of the heat for the primary flash distillation column and the secondary flash vessel is provided by the heat of the streams fed to the column and vessel and the alkanol contains up to about 4 carbon atoms. The process may be advantageously utilized to produce efficiently distilled NDC free or substantially free of residual oxidation catalyst and other high boilers at high yield and conversion. The NDC thus produced may then be further purified by crystallization, distillation, or other means known to those skilled in the art. Although the process may be used to produce any isomer of NDC from the corresponding NDA isomer, its value resides primarily in the manufacture of 2,6-NDA which, as noted above, is an important raw material for the production of poly(ethylene 2,6-naphthalenedicarboxylate).
REFERENCES:
patent: 3227743 (1966-01-01), Shaw et al.
patent: 4003948 (1977-01-01), Yamashita et al.
patent: 4048021 (1977-09-01), Takamoto et al.
patent: 5095135 (1992-03-01), Yamada et al.
patent: 5254719 (1993
Allen Rose M.
Eastman Chemical Company
Gwinnell Harry J.
Keys Rosalynd
LandOfFree
Process for the preparation of dialkyl esters of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for the preparation of dialkyl esters of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of dialkyl esters of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2448549