Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...
Reexamination Certificate
1999-10-12
2001-11-13
Carr, Deborah D. (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Fatty compounds having an acid moiety which contains the...
C554S156000
Reexamination Certificate
active
06316643
ABSTRACT:
The present invention relates to a process for the preparation of a mixture of branched and oligomeric fatty acids, by contacting a composition comprising unsaturated straight chain fatty acids with an ionic liquid. Fatty acids are versatile building blocks in various parts of the chemical industry, ranging from lubricants, polymers, solvents to cosmetics and much more. Fatty acids are generally obtained by hydrolysis of triglycerides of vegetable or animal origin. Naturally occurring triglycerides are esters of glycerol and generally straight chain, even numbered carboxylic acids, in size ranging from 10-24 carbon atoms. Most common are fatty acids having 12, 14, 16 or 18 carbon atoms. The fatty acids can either be saturated or contain one or more unsaturated bonds.
Long, straight chain saturated fatty acids (C10:0 and higher) are solid at room temperature, which makes them difficult to process in a number of applications. The unsaturated long chain fatty acids like e.g. oleic acid are liquid at room temperature, so easy to process, but are unstable because of the existence of a double bond. Derivatives of fatty acids that are branched (i.e. branched fatty acids) mimic the properties of the straight chain in many respects, however, they do not have the disadvantages associated with them. For example branched C18:0 (commercially known as isostearic acid) is liquid at room temperature, but is not as unstable as unsaturated C18:1, since the unsaturated bonds are prone to oxidation. Therefore, branched fatty acids are for many applications more desirable than straight chain fatty acids.
Apart from branched fatty acids other fatty acid derivatives, such as oligomerised fatty acids, find use in similar and other applications. Oligomeric fatty acids refer to materials prepared by coupling of the monomer units, of which typically dimeric and trimeric species are desired building blocks in plastics, the personal care industry, lubricants, etcetera.
Mixtures comprising oligomerised fatty acids and branched fatty acids can be likewise useful.
Currently, branched and oligomeric fatty acids are obtained by isomerisation/oligomerisation of the straight chain, unsaturated fatty acids. The reaction is conventionally carried out using a clay catalyst, and is generally performed at high temperature (e.g. 250° C.). A common process is the preparation of branched C18:0 and dimerised C18 (i.e. C36 dicarboxylic acids) from unsaturated straight chain C18:1 (or also C18:2). A disadvantage in this conventional process is that substantial amounts of aromatic dimers are formed. Such compounds are undesirable for a number of reasons, of which the most notable are: they do not contribute to the properties desired, and they can present a health hazard. The latter precludes the use of conventional dimer acids for certain highly desirable applications in the personal product and cosmetics industries.
In addition, the prior art processes suffer from the disadvantage that although a reasonable amount of polymerised product is obtained, the ratio of dimerised to trimerised and higher fatty acids is fixed and cannot easily be tuned to market demand.
Hence, there is a need for a process for the preparation of a mixture comprising branched and oligomeric fatty acids, in which mixture the concentration of aromatic dimers is low, or preferably substantially zero.
It has now been found that the above objectives can be met by a process for the preparation of a mixture comprising branched fatty acids and dimerised fatty acids, wherein a source comprising unsaturated fatty acids or derivatives thereof, is contacted with an ionic liquid.
An ionic liquid is herein to be understood as a salt (or a mixture of salts) in its liquid form (i.e. molten).
Preferably, to lead to the desired products, in the process according to the invention, the source comprises at least 50% by weight of fatty acids or derivatives thereof, having at least one unsaturated carbon-carbon bond in the fatty acid chain. It is also preferred that at least 50% by weight of said fatty acids or derivatives of fatty acids have a fatty acid chain length of between 8 and 24 carbon atoms. A preferred fatty acid in this respect is oleic acid or derivatives thereof.
Regarding the derivatives in the source as mentioned, esters are preferred, with alkylesters being the most preferred. Of these alkylesters, the most preferred ones are the fatty acid esters of alcohols having 1-4 carbon atoms, e.g. methanol, ethanol, propanol. Hence, a preferred source for performing the reaction according to the invention comprises oleic acid, methyl oleate, and/or ethyl oleate.
With respect to the type of ionic liquid, a wide variety of possibilities exists. However, it will be clear that the preferred ionic liquids are the ones that are liquid at relatively low temperatures. Although some salts have very high melting points (i.e. common NaCl has a melting point of approx. 850° C.), there are salts known which melt under less severe conditions. An example of such salts are mixtures of two or more salts. In the case in which a mixture of two salts is used, the resulting ionic liquid is called a binary ionic liquid. Hence, it is preferred that in the process as set out above the ionic liquid comprises a binary ionic liquid.
Preferred binary ionic liquids comprise a metal(III) chloride and/or an organic halide salt, e.g. [A]
+
X
−
. Also, inorganic halide salts can be used. Suitable metal (III) chlorides include aluminium (III) chloride and iron (III) chloride. Regarding the organic halide, an unsymmetrical imidazolium or pyridinium halide has the advantage that isomerisation/oligomerisation may now occur under mild conditions, contrary to conventional processes. A preferred unsymmetrical imidazolium halide is 1-methyl-3-ethyl imidazolium chloride.
A distinct advantage of the presently invented process over the known processes is that there is no need to carry out a reaction for branching and/or oligomerisation of fatty acids at elevated temperatures: as long as the temperature is high enough for the salt which is used as the reaction “solvent” (or medium) to be in its liquid form (i.e. molten). An additional advantage is that substantially no aromatic and/or cyclic dimers are formed in the process according to the invention.
Therefore, it is preferred that the process according to the invention is carried out at temperatures below 250° C. More preferred are operating temperatures of below 150° C., or even below 50° C., as long as the ionic liquid is chosen such that the mixture of ionic liquid and reactants is a liquid. Some reaction systems are even active at temperatures below 0° C. At such temperatures, the amount at cracked products obtained can be low, and following this, such a temperature can be preferred for some cases.
As an additional advantage, there is no need for performing the reaction under increased pressure, and therefore, it is preferred for the reaction according to the invention to be carried out at atmospheric pressure.
Yet a further advantage of the present process is that long reaction times are not needed. Generally, the reaction can be shorter than 60 minutes, in many cases even shorter than 15 minutes.
In the process according to the invention, the ratio of ionic liquid: fatty acid reactant is preferably larger than 1:1, preferably at least 3:1, and most preferably at least 6:1.
In a practical set up, the process will be preferably be operated in a (semi-) continuous way, and the products are separated from the reactants and ionic liquid. The expensive unsymmetrical imadazolium or pyridinium halide can be easily separated from the product by extraction with solvents such as dichloromethane and hexane etc, together with mixtures thereof. The imidazolium or pyridinium species can then be recycled following evaporation or distillation of the solvent.
REFERENCES:
patent: 3090807 (1963-05-01), Illing et al.
patent: 4371469 (1983-02-01), Foglia et al.
Adams Christopher John
Earle Martyn John
Hamill Jennifer Therese
Lok Cornelis Martinus
Roberts Glyn
Carr Deborah D.
Pillsbury & Winthrop LLP
Unichema Chemie BV
LandOfFree
Process for the preparation of derivatives of fatty acids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for the preparation of derivatives of fatty acids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of derivatives of fatty acids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2610234