Process for the preparation of an ultrapure solution of...

Liquid purification or separation – Particulate material type separator – e.g. – ion exchange or... – Spaced beds

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S677000

Reexamination Certificate

active

06187189

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for the preparation of an ultra pure hydrogen peroxide solution, and to a plant for the implementation of the process.
2. Description of the Related Art
The use of hydrogen peroxide for advanced technology applications or applications in the food industry, in hygiene or health requires increasingly pure products which must meet a growing number of increasingly tight specifications. In particular, the demands of users are turning towards hydrogen peroxide solutions in which the content of each metal impurity is less than one part per billion (ppb) and preferably less than 100 parts per trillion (ppt). In the following account, such solutions will be known as ultrapure hydrogen peroxide solutions.
It is well known, according to the prior art, that it is possible to remove certain impurities by passing the solution through a bed of ion-exchange adsorbents. Mention may be made, for example, of functionalized polymers of polystyrene/divinylbenzene type, silicas or aluminosilicates, in particular the varieties containing controlled micropores, such as zeolites, or active charcoals; these solids carry functional Groups capable of complexing either cations or anions. Mention may be made, as examples of functional groups capable of complexing cations, of the carboxylic, sulphonic, phosphonic, hydroxide, amine oxide or phosphine oxide groups or alternatively of cyclic or open polyoxaalkyls, such as, for example, ethylene oxide polymers. Mention may be made, as examples of functional groups capable of complexing anions, of the quaternary ammonium or quaternary phosphonium groups. These adsorbents can also be obtained by polymerization of a monomer carrying a functional group, for example poly(methacrylic acid)s, poly(vinylphosphonic acid)s, polyvinylpyridines, polyvinylpyrrolidones, poly(vinyl alcohol)s, saponified polylactones and copolymers containing these units. The adsorbents which are the most often described are polystyrene gels or crosslinked polystyrenes possessing sulphonic —SO
3
H or trimethylammonium (CH
3
)
3
N
+
— functional groups.
Many combinations have been provided, such as, for example, anionic resin followed by cationic resin or cationic resin followed by anionic resin or alternatively anionic resin followed cationic resin followed by cationic+anionic “mixed bed”. Additions to the inter-stage phases are also described, such as, for example, the addition of acid in order to modify the pH or the addition of chelating agents, such as aminomethylenecarboxylic or aminomethylenephosphonic derivatives.
It is well known to the person skilled in the art that the use of anion-exchange adsorbents presents great difficulties when employed for the purification of hydrogen peroxide. In particular, the hydroxide form, under which these products are generally available industrially, cannot be used directly because of its excessively high basicity, resulting in significant decomposition of hydrogen peroxide. Many publications describe the use of adsorbents exchanged by carbonate or bicarbonate ions, which are less basic, in order to limit the decomposition of hydrogen peroxide, without, however, eliminating it completely.
It is essential to be able to control this phenomenon of decomposition of hydrogen peroxide on adsorbent beds because, as this decomposition with release of gaseous oxygen is exothermic, the rate is accelerated according to the law of Arhenius. The formation of a gas pocket can further aggravate the phenomenon since, by separating the liquid from the decomposition point, the heat released can no longer be removed by evaporation of the water and the cooling effect of the liquid is lost. Such a process is characteristic of a divergent reaction which can result in an extremely violent autoaccelerated decomposition reaction, which is all the more dangerous since it is highly exothermic and produces gaseous oxygen, thus with a considerable expansion force which can cause explosions.
It has been shown that the phenomenon of initiation of the violent decomposition reaction by simple heating of a bed of anion-exchange resin in the trimethylammonium bicarbonate form (Dowex A 550 UPE) in the presence of a 30% aqueous hydrogen peroxide solution at moderate temperature, for example 30 to 35° C., for a few tens of minutes is much faster with a resin which has been used for the purification of the peroxide than with a freshly exchanged resin. If the “TMR” (time to maximum rate), which indicates, at a given temperature, the induction period before initiation of the explosive decomposition, is taken as evaluation parameter, the following results were obtained:
fresh resin: T=56° C.: TMR=15 min; T=51° C.: TMR=30 min; T=44° C.: TMR=60 min
used resin: T=41° C.: TMR=15 min; T=35° C.: TMR=30 min; T=32° C.: TMR=60 min
It is thus obvious that a used resin is much more sensitive to hydrogen peroxide autodecomposition phenomena, probably because of the catalytic effect of the metal species exchanged during purification.
SUMMARY OF THE INVENTION
The object of the present invention is thus to obtain ultrapure hydrogen peroxide solutions while limiting the risk of violent decomposition of the hydrogen peroxide during the purification stages.
The subject of the present invention is a process for the preparation of an ultrapure hydrogen peroxide solution, characterized in that it comprises at least one sequence which includes passing the solution to be purified through successively at least one bed of anion-exchange adsorbents (AEA) and at least one bed of cation-exchange adsorbents (CEA) and characterized in that a non-zero proportion of the solution exiting from a bed is recycled either upstream of this bed or upstream of one of the preceding beds or upstream of the first bed of the first passing sequence.


REFERENCES:
patent: 3074782 (1963-01-01), Meeker et al.
patent: 4999179 (1991-03-01), Sugihara et al.
patent: 5397475 (1995-03-01), Millar et al.
patent: 5733521 (1998-03-01), Minamikawa et al.
patent: 5928621 (1999-07-01), Ledon et al.
patent: 774 442 (1996-10-01), None
patent: 2 056 314 (1980-08-01), None
patent: WO96/39237 (1996-12-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the preparation of an ultrapure solution of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the preparation of an ultrapure solution of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of an ultrapure solution of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568350

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.