Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...
Patent
1997-12-22
1999-08-10
Owens, Amelia
Organic compounds -- part of the class 532-570 series
Organic compounds
Heterocyclic carbon compounds containing a hetero ring...
549214, 549510, 536 41, C07D30514, C07D30500
Patent
active
059361018
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to a novel process for the preparation of stable chemiluminescent 1,2-dioxetane compounds which can be triggered to generate light. Stable, triggerable dioxetanes prepared by the present process are preferably of the formula: ##STR1## The present invention also relates to novel sulfur-substituted alkenes (vinyl sulfides) preferably of the formula: ##STR2## and stable triggerable-sulfur-substituted 1,2-dioxetanes preferably of the formula: ##STR3## a process for their preparation and a process for their use as intermediates for producing stable triggerable 1,2-dioxetanes substituted on the dioxetane ring with alkoxy, alkenyloxy, alkynyloxy, aryloxy, aralkyloxy or acyloxy groups.
(2) Dscription of Related Art
a. Synthesis of Dioxetanes
The preparation of dioxetanes with alkoxy substituents by addition of singlet oxygen to a vinyl ether is well known in the art. Singlet oxygen is typically produced by irradiation of a photosensitizing dye in the presence of oxygen but can also be generated by thermolysis of triphenylphosphite ozonide. Other methods of preparing dioxetanes with alkoxy substituents from vinyl ethers include electron-transfer oxidation with oxygen and triarylaminium cation radical salts (R. Curci, L. Lopez, L. Troisi, S. M. K. Rashid and A. P. Schaap, Tetrahedron Lett. 28, 5319-22 (1987); L. Lopez, L. Troisi and G. Mele, Tetrahedron Lett. 32, 117-20 (1991)), oxidation by Cr(VI),or Mo(VI) oxide diperoxides (R. Curci, L. Lopez, L. Troisi, S. M. K. Rashid and A. P. Schaap, Tetrahedron Lett. 29, 3145-8 (1988)) and oxidation with triethylsilyl hydrotrioxide (G. H. Posner, K. S. Webb, W. M. Nelson, T. Kishimoto and H. H. Seliger, J. Org. Chem., 54, 3252-4 (1989)). A dioxetane was produced in low yield by reaction of a dioxene compound with oxygen which had been passed through an electric discharge, apparently producing a small amount of singlet oxygen in addition to ozone (T.-S. Fang and W.-P. Mei, Tetrahedron Lett. 28, 329-21 (1987)).
All of these methods for the preparation of alkoxy-substituted dioxetanes require the preparation of the precursor vinyl ether. No reaction involving the direct introduction of alkoxy or aryloxy groups on a pre-formed dioxetane ring has been reported to the best of applicant's knowledge. There is thus a need for a general method for the preparation of a variety of alkoxy-substituted dioxetanes from a common intermediate which does not require the preparation of each individual vinyl ether precursor.
b. Sulfur-Substituted Dioxetanes
1,2-Dioxetanes with one or more sulfur-containing substituents on the dioxetane ring are known. All known examples are unstable, with most decomposing rapidly at room temperature. (W. Adam, L. A. Arias, D. Scheutzow, Tetrahedron Lett., 23(28), 2835-6 (1982); W. Adam, L. A. Encarnacion, Chem. Ber., 115(7), 2592-605 (1982); W. Ando, K. Watanabe, T. Migita, J. Chem. Soc., Chem. Commun. (24), 961-2 (1975); G. Geller, C. S. Foote, D. B. Pechmann, Tetrahedron Lett. 673-6 (1983); R. S. Handley, A. J. Stern, A. P. Schaap, Tetrahedron Lett. 26, 3183-6 (1985)). The most stable sulfur-substituted dioxetanes, derived from 4,5-dialkyl-2,3-dihydrothiophene decompose with a half-life of a few minutes at room temperature (W. Adam, A. Griesbeck, K. Gollnick, K. Knutzen-Mies, J. Org. Chem., 53, 1492-5 (1988); K. Gollnick, K. Knutzen-Mies, J. Org. Chem., 56, 4027-31 (1991)). Two spiroadamantyl-substituted dioxetanes bearing one and two sulfur substituents, respectively, on the dioxetane ring are known. Both have been reported to rapidly and completely decompose on attempted isolation at room temperature (W. Adam, L. A. Encarnacion, Chem. Ber., 115(7), 2592-605 (1982)).
c. Synthesis of Vinyl Sulfides
Vinyl sulfides containing a carbon--carbon double bond and a sulfur substituent directly attached to one of the double bond carbon atoms can be prepared by various methods known to the skilled synthetic chemist. One of the classical methods for preparation of vinyl sulfides involve
REFERENCES:
patent: 4857652 (1989-08-01), Schaap
patent: 5004565 (1991-04-01), Schaap
patent: 5068339 (1991-11-01), Schaap
Akhavan-Tafti Hashem
Arghavani Zahra
Eickholt Robert A.
Handley Richard S.
Lumigen Inc.
Owens Amelia
LandOfFree
Process for the preparation of 1,2-dioxetane compounds and novel does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for the preparation of 1,2-dioxetane compounds and novel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of 1,2-dioxetane compounds and novel will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1121414