Process for the oxidation of cyclohexanone to...

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S246000, C502S249000, C502S224000, C987S024000, C568S771000, C568S800000, C568S803000

Reexamination Certificate

active

06531615

ABSTRACT:

This invention relates to a composition comprising antimony trifluoride and silica, a method for the preparation of said composition and certain uses of said composition, in particular its use as catalyst.
The Baeyer-Villiger oxidation of ketones to lactones or esters (A. Baeyer and V. Villiger, Ber., 1899, vol. 32, page 3625) is a widely used synthetic method and has been comprehensively reviewed (C. H. Hassall, Org. React., 1957, vol. 9, page 73; G. R. Krow, Org. React., 1993, vol. 42, page 251). An example is the oxidation of cyclohexanone to &egr;-caprolactone, which is of particular industrial interest since it is extensively used in the synthesis of polycaprolactones.
The most common reagents used for the Baeyer-Villiger oxidation of ketones to lactones or esters are peroxycarboxylic acids (e.g. peracetic acid, m-chloroperbenzoic acid). These are commercially available on a large scale, but their industrial use is impractical for safety and cost reasons. In particular, they are shock sensitive in their pure form and may be explosive in the condensed phase. Moreover, they yield the corresponding carboxylic acid products, which may give rise to separation and recycling problems.
In order to avoid the use of these potentially dangerous materials and to lower the environmental impact of the waste produced, various other oxidation systems using hydrogen peroxide as the oxidant have been developed. (J. D. McClure et al., J. Org. Chem., 1962, vol 27,24; S E. Jacobsen et al., J. Am. Chem. Soc., 1979, vol. 101,6938; A. Gusso et al., Organometallics, 1994, vol. 13, 3442). For example, the following compounds have been used in conjunction with hydrogen peroxide—boron trifluoride etherate, borax (Na
2
B
4
O
7
), arsenic containing compounds, cationic platinum complexes, molybdenum complexes, methyltrioxorhenium, selenium compounds, titanium silicate, zeolites, sulfonated resins and sodium hydroxide.
Tanabe and Hattori have made solid superacids based on antimony pentafluoride supported on silica and other metal oxides (K. Tanabe et al., Chem. Lett., 1976, 625), but antimony trifluoride supported on silica has not been reported or even suggested, and neither has its use as catalyst in Baeyer-Villiger oxidations.
Accordingly, the present invention provides a composition comprising antimony trifluoride and silica. As used herein, “silica” is defined as any form of a dioxide of silicon. Forms of silica may be hydrated. Forms of silica include a crystalline quartz form; a crystalline cristobalite form; a crystalline tridymite form; a crytocrystalline chalcedony form; an amorphous form; an amorphous opal form; an amorphous granular hydrated form (silica-gel); a form including aluminium atoms, such as an aluminosilicate; and a mesoporous form, such as HMS hexagonal mesoporous silica. Preferably the silica comprises HMS or silica-gel; more preferably the silica comprises HMS.
Preferably the composition is substantially pure. If present, materials other than antimony trifluoride and silica are preferably present in only trace amounts. Preferably the antimony trifluoride is present in an amount of up to about 2 mmol SbF
3
per gram of composition, more preferably the antimony trifluoride is present in an amount of between 0.1 and 1.5 mmol, preferably 0.5 to 1.5 mmol SbF
3
per gram of composition. Amounts of 1 to 2 mmol SbF
3
per gram of composition can lead to good results.
Preferably, the composition is in the form of a powder having a mean particle size, specific surface area (SA) and average pore diameter (APD) which depend on those of the starting silica. Generally, the SA is below or equal to 1300 m
2
/g, in particular 1250 m
2
/g, or even below or equal to 1000 m
2
/g in the case of HMS, and below or equal to 600 m
2
g, in particular 530 m
2
/g, or even below or equal to 450 m
2
/g in the case of silica-gel. The SA is generally above 300 m
2
/g, and even above 700 m
2
/g in the case of HMS. And typically, the APD is below or equal to 10 nm, in particular 6 nm. The APD is generally above 1 nm, in particular 2 nm. The APD is mostly close to or superior to 3 nm in the case of HMS, and it may be close to 6 nm in the case of silica-gel.
The present invention further comprises a process comprising the use of the composition comprising antimony trifluoride and silica as a catalyst. Reactions may be carried out as a batch process or in a continuous process. Preferably the composition catalyses an organic oxidation reaction. Preferably hydrogen peroxide is used as oxidising agent. Preferably the composition calalyses an oxidation of a ketone to a lactone or ester, more preferably the composition catalyses the oxidation of cyclohexanone to &egr;-caprolactone.
It may also catalyse the oxidation of cyclopentanone to valerolactone and the oxidation of cycloheptanone to enantholactone.
The oxidation of cyclohexanone to &egr;-caprolactone may be carried out as a batch process or a continuous process. In a batch process, the composition, cyclohexanone and hydrogen peroxide are mixed and allowed to react. In a continuous process, cyclohexanone and hydrogen peroxide may, for example, be passed through a column containing the composition. The product may be removed from the reaction mixture in subsequent separation steps.
Preferably the process of the oxidation of cyclohexanone to &egr;-caprolactone comprises the steps of:
a) mixing the composition with cyclohexanone,
b) adding hydrogen peroxide to the mixture, and
c) allowing the reaction to proceed.
These steps can be carried out successively, in a batch process, or simultaneously in a continuous process.
Typically, step (a) is performed at a temperature of up to about 70° C. More preferably, step (a) is performed at room temperature. Typically step (b) is performed over a period of between about 5 minutes to about 120 minutes preferably over about 30 minutes. Typically in steps (b) and (c) the reaction is maintained at a temperature of up to about 110° C., preferably at a temperature of between about 60° C. and about 100° C., more preferably between about 70° C. and 90° C. It has been found that raising the temperature can improve yields but is detrimental to the recovery of the catalyst. Typically step (c) is performed at a pressure at which the reaction mixture boils (in order to remove water azeotropically). Preferably step (c) is performed at a pressure of between 50 and 150 mbar. Preferably steps (a), (b) and (c) is performed under stirring.
Preferably a molar excess of cyclohexanone is used relative to hydrogen peroxide. Preferably the molar ratio of cyclohexanone: hydrogen peroxide is up to about 5:1, more preferably from about 2:1 to about 3:1, more preferably about 2.5:1. Preferably the composition is used in an amount of up to 10 g per 100 ml of cylcohexanone, more preferably the composition is used in an amount of up to 5 g per 100 ml of cyclohexanone, even more preferably the composition is used in an amount of up to 2 g per 100 ml of cyclohexnone.
Preferably water is constantly removed from the reaction mixture. This gives the advantage of limiting the formation of unwanted by-products which can be formed through the ring opening of the lactone under the action of water. Any suitable means may be used for removing water, for example azeotropic removal or use of a dessicant. Preferably the water is removed azeotropically.
Preferably hydrogen peroxide is a 30% to 90% solution in water, more preferably hydrogen peroxide is a 70 to 85% solution in water, for instance an about 85% solution in water. However, a 65-75%, and especially a 70% H2O2 solution was surprisingly more effective than a 80-90%, and especially a 86% H2O2 solution, which shows that the presence of a small amount of water during the reaction may be beneficial.
Alternative oxidising agents include agents capable of generating hydrogen peroxide in situ and other peroxides such as sodium percarbonate and sodium perborate.
The present invention further provides a method for the preparation of the composition comprising antimony trifluoride and silica, comprising the step of tre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the oxidation of cyclohexanone to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the oxidation of cyclohexanone to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the oxidation of cyclohexanone to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077386

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.