Process for the manufacture of functionalized polyphenylene...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S390000, C525S391000, C525S392000, C525S394000, C525S397000, C528S205000, C528S212000, C528S215000, C528S217000

Reexamination Certificate

active

06417274

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
FEDERALLY SPONSORED RESEARCH
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a novel process for the manufacture of functionalized polyphenylene ether resin.
The invention also relates to the functionalized polyphenylene ether resins made by the process as well as blends and articles containing the functionalized polyphenylene ether resin made by the process.
2. Brief Description of the Related Art
Polyphenylene ether resins (hereinafter “PPE”) are commercially attractive materials because of their unique combination of physical, chemical, and electrical properties. Furthermore, the combination of PPE with other resins provides blends which result in additional overall properties such as chemical resistance, high strength, and high flow.
One technical obstacle to the development of such blends is the lack of compatibility between PPE and many resins. This lack of compatibility manifests itself often through very poor physical properties as well as delamination in molded parts. Methods have been developed to improve the PPE compatibility with many resins such as, for example, with polyesters and polyamides. One of the more effective methods involves functionalizing PPE to make functionalized PPE containing moieties that are reactive with the other resin in the blend. It is believed that when the functionalized PPE is allowed to react with the other resin that relatively small amounts of copolymer between the resins are formed. The copolymer is believed to be in large part responsible for improved compatibility between the PPE and the other resin. Indications of improved compatibility include resistance to lamination, improved physical properties such as increased tensile and impact properties and a stabilized morphology between the blend component phases under static and/or low shear conditions.
Methods to prepare functionalized PPE have included solution functionalization with an acid halide containing compound, such as trimellitic anhydride acid chloride, to make an endcapped PPE containing the reactive moiety. This method is rather limited in the variety of functionalized PPE that can be made. Also, the by-products from the capping reaction tend to cause emulsion and/or isolation issues in the solvent precipitation stage of the process.
Another known method to prepare functionalized PPE related to melt functionalization of the PPE in an extruder. This method involved melting and mixing PPE with a functionalizing agent to result in a functionalized PPE. The additional polymers could be fed into the same extruder or alternatively, the functionalized PPE could be isolated and subsequently used to prepare other compositions. Melt functionalization has issues, such as difficulty in feeding PPE into the extruder due to low bulk density and wide particle size distribution. Moreover, PPE are often powders and require special handling to avoid potential dust explosion.
It is therefore apparent that a need continues to exist for improved methods to prepare functionalized PPE.
SUMMARY OF THE INVENTION
The needs discussed above have been generally satisfied by the discovery of a process for preparing functionalized PPE, the process comprising oxidative coupling in a reaction solution at least one monovalent phenol species using an oxygen containing gas and a complex metal catalyst to produce a PPE; and functionalizing the PPE prior to and/or during at least one isolation step for devolatilization of the reaction solvent.
The description that follows provides further details regarding various embodiments of the invention.
DESCRIPTION OF THE DRAWINGS
Not applicable.
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of this invention provides for a process for the preparation of functionalized PPE, preferably having an intrinsic viscosity between about 0.08 dl/g and 0.60 dl/g, by oxidative coupling at least one monovalent phenol species, preferably at least a portion of which have substitution in at least the two ortho positions and hydrogen or halogen in the para position, using an oxygen containing gas and a complex metal-amine catalyst, preferably a copper (I)-amine catalyst, as the oxidizing agent and, preferably extracting at least a portion of the metal catalyst as a metal-organic acid salt with an aqueous containing solution, and functionalizing the PPE prior to and/or during at least one isolation step for devolatilization of the reaction solvent. In one embodiment, the functionalization is at least partly done in a flash process to concentrate the PPE reaction solution. In another embodiment, the functionalization is at least partly done prior to a flash process to concentrate the PPE reaction solution. In yet another embodiment, the functionalization is at least partly done in a devolatilizing extruder. These and other embodiments will become apparent in the description that follows.
The PPE employed in the present invention are known polymers comprising a plurality of structural units of the formula
wherein each structural unit may be the same or different, and in each structural unit, each Q
1
is independently halogen, primary or secondary lower alkyl (i.e., alkyl containing up to 7 carbon atoms), phenyl, haloalkyl, aminoalkyl, hydrocarbonoxy, or halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each Q
2
is independently hydrogen, halogen, primary or secondary lower alkyl, phenyl, haloalkyl, hydrocarbonoxy or halohydrocarbonoxy as defined for Q
1
. Most often, each Q
1
is alkyl or phenyl, especially C
1-4
alkyl, and each Q
2
is hydrogen.
Both homopolymer and copolymer PPE are included. The preferred homopolymers are those containing 2,6-dimethyl-1,4-phenylene ether units. Suitable copolymers include random copolymers containing such units in combination with (for example) 2,3,6-trimethyl-1,4-phenylene ether units. Also included are PPE containing moieties prepared by grafting vinyl monomers or polymers such as polystyrenes and elastomers, as well as coupled PPE in which coupling agents such as low molecular weight polycarbonates, quinones, heterocycles and formals undergo reaction in known manner with the hydroxy groups of two poly(phenylene ether) chains to produce a higher molecular weight polymer, provided a substantial proportion of free OH groups remains. Also included are PPE's containing a functional endgroup, obtained from reaction with a reactive compound having the functional endgroup.
The molecular weight and intrinsic viscosity of the PPE can vary widely, depending at least in part on the intended end-use for the PPE. The intrinsic viscosity (hereinafter “I.V.”) of the PPE is most often in the range of about 0.08-0.60 dl./g., preferably in the range of about 0.10-0.49 dl./g., as measured in chloroform at 25° C. One unexpected aspect of the process is the ability to utilize a very wide range of I.V.
The PPE are typically prepared by the oxidative coupling of at least one monohydroxyaromatic compound such as 2,6-xylenol, 2,3,6-trimethylphenol, or mixtures of the foregoing. Catalyst systems are generally employed for such coupling and they typically contain at least one heavy metal compound such as a copper, manganese, or cobalt compound, usually in combination with various other materials.
It will be apparent to those skilled in the art from the foregoing that the PPE contemplated in the present invention include all those presently known, irrespective of variations in structural units or ancillary chemical features.
The polymerization of the phenolic monomer may be carried out by adding the phenolic monomer or monomers to a suitable reaction solvent and preferably, a copper-amine catalyst. It is preferred to carry out the polymerization in the presence of a cupric or cuprous salt-secondary amine catalyst such as, for example, cupric chloride and di-n-butylamine. The polymerizations are advantageously carried out in the presence of an inorganic alkali metal bromide or an alkaline earth metal bromide. The in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the manufacture of functionalized polyphenylene... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the manufacture of functionalized polyphenylene..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the manufacture of functionalized polyphenylene... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2876181

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.