Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof
Reexamination Certificate
1998-06-22
2001-09-25
Geist, Gary (Department: 1609)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carboxylic acids and salts thereof
C562S519000
Reexamination Certificate
active
06294691
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a process for the manufacture of carboxylic acids. More in particular the invention relates to a process for the manufacture of branched carboxylic acids by means of a Koch synthesis using carbon monoxide as reagent and a solid acid catalyst.
BACKGROUND TO THE INVENTION
The up to now available processes are characterized by the fact that no solid acid catalyst could be used, unless said catalyst is operated under unattractively severe conditions or unless said catalyst is combined with corrosive Lewis acid cocatalyst or unless said catalyst is used in a non-aqueous reaction system.
In particular from International Application WO 96/20154 was known a process for the production of trialkylacetic acids from branched olefins and carbon monoxide in a non-aqueous reaction system using a solid resin catalyst comprising a cationic resin, having sufficient acid groups to provide requisite protons for conversion of branched olefin and carbon monoxide to trialkylacetic acids.
In particular the cationic resin was specified to have an acidity of at least equivalent to that of a 65 wt % sulphuric acid.
It will be appreciated by an average person skilled in the art that said process can only be performed in two steps, i.e. one step comprising contacting the solid catalyst with olefin/CO feed and a subsequent step contacting the catalyst with water feed, and that stoichiometric amounts of branched olefin and water will not lead to the desired products in an acceptable yield. Moreover, said process cannot produce more than 1 mole of converted olefin per mole active proton on the solid catalyst in one cycle of two steps.
On the other hand from WO 92/18592 was known a process for the manufacture of trialkylacetic acids and particularly of pivalic acid, from branched olefins and particularly isobutene, and Carbon monoxide, using a solid acid catalyst together with minor amounts of a Lewis acid, such as boron trifluoride.
In addition from EP-A-0249976 was known a process for the manufacture of branched carboxylic acids, by catalytic conversion of olefins with carbon monoxide and water in the presence of zeolites as catalysts at temperatures of from 200 to 500° C. and at pressures of 200 to 700 bar.
More in particular zeolites of the pentasil type are used as catalysts. According to the exemplified embodiments only high temperatures (300° C.) and pressures (300-500 bar) are used.
It will be appreciated that said disclosed reaction conditions will give rise to higher operation costs due to required measures as to safety and environment.
Therefore there is still a strong need for further improvement of the manufacturing process of branched carboxylic acids, starting from branched olefins and carbon monoxide.
An object of the present invention is providing an alternative efficient one step manufacturing process for branched carboxylic acids, which process uses relatively mild conditions on the one hand and which shows economically acceptable conversion and economically acceptable selectivity to branched acids on the other hand.
SUMMARY OF THE INVENTION
As a result of extensive research and experimentation there has now been surprisingly found a one step process for manufacture of branched carboxylic acids from branched olefins by means of reaction with carbon monoxide and a solid acid catalyst, characterized in that a branched olefin, or a precursor thereof, is reacted in a batch reactor or plug flow reactor with carbon monoxide and water, in the presence of an acidic ion exchanger, having sufficient acid groups to provide requisite protons for conversion of said olefin or a precursor of it, and carbon monoxide into branched carboxylic acids, and in the presence of a polar non-coordinating organic solvent.
More in particular the invention relates to an improved manufacturing process of trialkylacetic acids of the formula
wherein each symbol R represents a radical having 1 to 10 carbon atoms.
More preferably the total number of carbon atoms in the trialkylacetic acids ranges from 5 to 19 and most preferably from 5 to 14 carbon atoms.
With the term “branched olefin or a precursor thereof” as used throughout the present specification is meant that branched olefin itself as well as alcohols, esters or ethers, from which the specific olefin can be easily derived, can be used as starting materials for the present manufacturing process, which makes this process much more flexible than conventional prior art processes. In general all olefins containing at least one tertiary carbon atom or precursors therefor, can be converted by the present process.
DESCRIPTION OF A PREFERRED EMBODIMENT
An important advantage of the present process is that it can be operated as one step or one reactor process showing an economically acceptable combination of conversion degree and selectivity.
The catalyst to be used for the process of the present invention is a solid acidic ion exchanger showing strong acid behavior. It is preferably selected from the group consisting of sulfonated resins and more preferably copolymers of styrene and divinylbenzene, phenol or phenolic based resins, sulfonated poly(tetrafluoroethylene) and sulfonated siloxane polymers.
In either case of the presence of active sulfonic acid groups, the resin is treated to give a sulfonic acid cation-exchange resin capable of providing sufficient protons, i.e. the resin having an acid strength equivalent to at least 65 wt % sulphuric acid and preferably to at least 70 wt % sulphuric acid.
Catalyst solid resins, comprising sulfonic acid groups and derived from copolymers from styrene, divinylbenzene and phenol or derived from (tetrafluoroethylene)polymers or from siloxane polymers are preferred.
Specific more preferred examples of commercial effective acidic catalysts are AMBERLYST, NAFION or DELOXAN catalysts (AMBERLYST, NAFION and DELOXAN are Trade Marks).
Most preferred are the NAFION type catalysts. More preferably NAFION NR50 catalyst is used. The reaction temperature in the batch reactor is in the range of from 25° C. to 200° C. and preferably from 100 to 150° C.
The pressure in the reactor is in the range of from 10 to 200 bar and preferably from 50 to 100 bar.
As polar non-coordinating organic solvents can be used chemically inert polar organic solvents such as carboxylic acids or derivatives thereof and more in particular esters, or an optionally substituted sulfolane (preferably sulfolane).
According to a more preferred embodiment of the present process, as polar non-coordinating solvent a branched acid is present in the reactor. Most preferably the carboxylic acid to be produced can be used as solvent.
Normally the reactor is filled with solvent and catalyst with a catalyst/solvent wt ratio of in the range of from 0.01 to 0.5 w/w and preferably 0.2-0.3 w/w. The other respective reactants are introduced into the reactor and reaction mixture is heated to the desired reaction temperature.
The feed of starting olefin is in the range of from 0.01 to 10 g/g catalyst and preferably from 0.2 to 5 g/g catalyst, while the water/olefin molar ratio is in the range of from 0.5 to 2 mole/mole and preferably about 1 and the CO/olefin molar ratio is in the range of from 0.5 to 1000 mole/mole and preferably from 1 to 100.
It will be appreciated that, when using water amounts significantly below the hereinbefore specified amounts, the process becomes unattractive due to too low selectivity and that the selectivity and conversion have surprisingly been improved when using stoichiometric water:olefin=1:1 feed.
REFERENCES:
patent: 3036124 (1962-05-01), John, Jr.
patent: 3282973 (1966-11-01), Devine et al.
patent: 3923880 (1975-12-01), Westlake et al.
patent: 4652677 (1987-03-01), Pesa et al.
patent: 5241112 (1993-08-01), Sanderson et al.
patent: 5250726 (1993-10-01), Burke
patent: 5710323 (1998-01-01), Okuda et al.
patent: 0 249 976 A1 (1987-12-01), None
patent: WO 92/18592 (1992-10-01), None
patent: WO 96/20154 (1996-07-01), None
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Second Edition, Jer
Geist Gary
Maier Leigh C.
LandOfFree
Process for the manufacture of carboxylic acids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for the manufacture of carboxylic acids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the manufacture of carboxylic acids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2452458