Process for the isolation of clavulanic acid and of...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing heterocyclic carbon compound having only o – n – s,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S118000, C435S120000, C435S886000, C435S041000, C435S071300, C540S349000

Reexamination Certificate

active

06566106

ABSTRACT:

TECHNICAL FIELD
(IPC C 12 P 17/18, C 07 D 498104)
The present invention belongs to the field of pharmaceutical industry and relates to a novel and improved process for the isolation of clavulanic acid and of pharmaceutically acceptable salts thereof from the fermentation broth of Streptomyces sp. P 6621 FERM P 2804.
TECHNICAL PROBLEM
There exists a constant need for a novel and improved process for preparing pure clavulanic acid and pharmaceutically acceptable salts thereof such as potassium clavulanate by the isolation from the fermentation broth obtained by means of a clavulanic acid-producing microorganism, in which process sophisticated conventional isolation methods and chromatographic purification of the desired product would be avoided.
PRIOR ART
Clavulanic acid is the common name for (2R,5R,Z)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylic acid of the following formula
Alkali metal salts and esters thereof are active as inhibitors of beta-lactamases produced by some Gram positive as well as some Gram negative microorganisms.
In addition to the action of inhibiting beta-lactamases, clavulanic acid and alkali metal salts thereof also have a synergistic action in combination with beta-lactam antibiotics of penicillin and cephalosporin series. Therefore clavulanic acid and salts thereof are used in galenic preparations to prevent the deactivation of beta-lactam antibiotics. Commercial preparations contain a more stable potassium salt of clavulanic acid (the acid alone is rather unstable) in combination with amoxicillin trihydrate.
Clavulanic acid is prepared by the fermentation of a clavulanic acid-producing microorganism such as various microorganisms belonging to different Streptomyces strains such as
S. clavuligerus
NRRL 3585,
S. jumoniensis
NRRL 5741,
S. katsurahamanus
IFO 13716 and Streptomyces sp. P 6621 FERM P 2804.
The aqueous culture broth obtained after fermentation may be purified and concentrated according to conventional processes comprising e.g. filtration and chromatographic purification as illustrated in GB 1,508,977 prior to the extraction of the aqueous solution with the organic solvent to obtain a solution of impure clavulanic acid in an organic solvent.
GB 1,508,977 teaches, inter alia, that salts of clavulanic acid may be obtained by the adsorption of the clavulanate anion in the filtered broth onto an anionic exchange resin and are eluted therefrom with an electrolyte, the solution formed is desalted and then the solvent is removed. This process may be used to achieve acceptable yields of the desired substance, yet it requires sophisticated purifications by chromatographic methods and the use of resin columns demands important investments, which limits production operations on a large scale.
GB 1,543,563 discloses a modified fermentation process using the strain
S. clavuligerus
NRRL 3585, wherein the pH value of the medium is maintained in the range between 6.3 and 6.7 and thus the yield of the desired compound increases. Salts of clavulanic acid such as potassium clavulanate are prepared by re-salting from lithium clavulanate, whereby the desired compound is also purified.
EP-A-0 026 044 illustrates the use of tert-butylamine salt of clavulanic acid as a useful intermediate in the preparation of clavulanic acid. The salt is known from BE 862 211, but only as an ingredient in pharmaceutical formulations.
EP-B-0 182 522 discloses a method of preparing clavulanic acid by the fermentation of microorganism
S. clavuligerus
. An important improvement of the process was achieved by the addition of a carbon source such as glycerol into the fermentation medium in the course of the process either continually or intermittently, whereat it is very important that the carbon level is maintained in a sufficiently low concentration, namely under 0.5% (w/v) and by no means exceeds 2%. The Examples illustrate that the essential improvement of the increased yield of clavulanic acid was observed when the carbon source was added during fermentation. It is stated that the concentration of clavulanic acid in the fermentation broth after 160 hours was about 1400 &mgr;g/ml, this being a noticeable improvement over previous processes.
A further improvement was also a novel process of purifing clavulanic acid from solution as its lithium salt. However, to achieve a higher purity of lithium clavulanate a concentrated solution of another lithium salt such as lithium chloride was added. The obtained recrystallized lithium clavulanate could be further purified and then optionally converted into other salts such as potassium clavulanate, in a manner known from the above literature.
The mycelium, proteins and other solids are removed by known methods such as centifugation or filtration with a possible prior treatment of the fermentation broth with a selected aggregation agent to aggregate the mycelium and thus make possible an easier filtration. The filtered fermentation broth is further treated with ion exchange resins or by precipitation with a solvent such as acetone in order to remove proteins and the precipitate is separated by repeated centrifugation and filtration. This separation of the mycelium, proteins and other accompanying particles in the suspension originally present in the fermentation broth, is time-consuming and requires several working steps.
These time-consuming methods of removing the mycelium, proteins and other suspended particles and subsequent isolation from the obtained transparent fermentation broth as well as preparation of pure clavulanic acid and salts thereof were avoided in a manner as disclosed in the published EP-A-0 385 552 and EP-A-0 387 178.
The whole process comprises three steps i.e. purifying the fermentation broth of the mycelium, proteins and other solid particles, purifying the clavulanic acid present in an impure form in the broth of a purified filtrate of
Streptomyces clavuligerus
by using one of the primary, secondary or tertiary amines forming stable intermediary salts of clavulanic acid, whereby the major part of accompanying impurities in clavulanic acid are separated, and as the last step, the conversion of intermediary amine salts of clavulanic acid (of 85% purity) into the desired alkali metal salt such as potassium clavulanate.
The first step is disclosed in more detail in EP-A-0 385 552, wherein from the aqueous culture broth obtained by the fermentation of the microorganism
Streptomyces clavuligerus
, by means of a physico-chemical process of coagulation-flocculation, the mycelium, proteins and other solid particles are removed. The flocculi obtained in this process are sufficiently large and compact so that an easy sedimentation and separation is made possible, which is best achieved by using rolling sieves. Thus a transparent broth is obtained, which may be optionally concentrated by reverse osmosis.
In this manner a purified fermentation broth is obtained, the conventional purifying methods such as centrifugation, adsorption on active carbon, filtration with coadjuvants etc. having been avoided.
In all known processes it is also necessary (which is different from the disclosed flocculation method) that the purified broth of the culture is treated by means of various processes of deproteinization and ion exchange, which causes significant total losses in the final yield of the desired substance. In contrast to well-known methods, the total yields in the flocculation method amount to 85 to 90%.
The disclosed method of coagulation-flocculation from the fermentation broth of
Streptomyces clavuligerus
is based upon adding an inorganic electrolyte into the broth culture to increase the coagulant action, applying the inorganic coagulant as initiator of the coagulation process under stirring and at a pH value of the medium between 6 and 8, adding an organic electrolyte when the flocculation begins, and then separating the obtained flocculi from the fermentation broth using rolling sieves, or filtration and, optionally, when flocculation takes place in the presence of a water-immis

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the isolation of clavulanic acid and of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the isolation of clavulanic acid and of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the isolation of clavulanic acid and of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3057351

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.