Process for synthesizing trans-1,4-polybutadiene

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S177000, C526S181000, C526S335000

Reexamination Certificate

active

06670435

ABSTRACT:

BACKGROUND OF THE INVENTION
By virtue of its high level of crystallinity, trans-1,4-polybutadiene (TPBD) is typically a thermoplastic resin. Because it contains many double bonds in its polymeric backbone, TPBD can be blended and cocured with rubber. TPBD is similar to syndiotactic-1,2-polybutadiene in this respect. Even though trans-1,4-polybutadiene having a high melting point is a thermoplastic resin, it becomes elastomeric when cured alone or when cocured with one or more rubbers.
Good molecular weight control can normally be achieved by utilizing an anionic polymerization system to produce TPBD. There is typically an inverse relationship between the catalyst level utilized and the molecular weight attained when anionic polymerization systems are used. Such an anionic polymerization system is disclosed in U.S. Pat. No. 4,225,690. The catalyst system disclosed therein is based on a dialkylmagnesium compound which is activated with a potassium alkoxide. However, such catalyst systems have not proven to be commercially successful.
TPBD is normally prepared utilizing transition metal catalysts or rare earth catalysts. The synthesis of TPBD with transition metal catalysts is described by J. Boor Jr., “Ziegler-Natta Catalysts and Polymerizations,” Academic Press, New York, 1979, Chapters 5-6. The synthesis of TPBD with rare earth catalysts is described by D. K. Jenkins, Polymer, 26, 147 (1985). However, molecular weight control is difficult to achieve with such transition metal or rare earth catalysts and monomer conversions are often very modest.
Japanese Patent Application No. 67187-1967 discloses a catalyst system and technique for synthesizing TPBD consisting of 75 to 80 percent trans-1,4-structure and 20 to 25 percent 1,2-structure. The catalyst system described by this reference consists of a cobalt compound having a cobalt organic acid salt or organic ligand, an organoaluminum compound and phenol or naphthol. Gel formation is a serious problem that is frequently encountered when this three-component catalyst system is utilized in the synthesis of TPBD. Gelation is a particularly serious problem in continuous polymerizations. By utilizing this catalyst system and technique, TPBD can be synthesized in a continuous process with only minimal amounts of gel formation.
U.S. Pat. No. 5,089,574 is based upon the finding that carbon disulfide will act as a gel inhibitor in conjunction with three component catalyst systems which contain an organocobalt compound, an organoaluminum compound and a para-alkyl substituted phenol. U.S. Pat. No. 5,089,574 also indicates that conversions can be substantially improved by utilizing para-alkyl substituted phenols which contain from about 12 to about 26 carbon atoms and which preferably contain from about 6 to about 20 carbon atoms.
U.S. Pat. No. 5,089,574 more specifically reveals a process for synthesizing trans-1,4-polybutadiene in a continuous process which comprises continuously charging 1,3-butadiene monomer, an organocobalt compound, an organoaluminum compound, a para-substituted phenol, carbon disulfide and an organic solvent into a reaction zone; allowing the 1,3-butadiene monomer to polymerize in said reaction zone to form the trans-1,4-polybutadiene; and continuously withdrawing the trans-1,4-polybutadiene from said reaction zone.
U.S. Pat. No. 5,448,002 discloses that dialkyl sulfoxides, diaryl sulfoxides and dialkaryl sulfoxides act as molecular weight regulators when utilized in conjunction with cobalt-based catalyst systems in the polymerization of 1,3-butadiene monomer into TPBD. U.S. Pat. No. 5,448,002 reports that the molecular weight of the TPBD produced decreases with increasing levels of the dialkyl sulfoxide, diaryl sulfoxide or dialkaryl sulfoxide present as a molecular weight regulator.
U.S. Pat. No. 5,448,002 specifically discloses a process for the synthesis of trans-1,4-polybutadiene which comprises polymerizing 1,3-butadiene monomer under solution polymerization conditions in the presence of at least one sulfoxide compound selected from the group consisting of dialkyl sulfoxides, diaryl sulfoxides and dialkaryl sulfoxides as a molecular weight regulator and in the presence of a catalyst system which includes an organocobalt compound, an organoaluminum compound and a para-alkyl substituted phenol.
The presence of residual cobalt in TPBD made with cobalt-based catalyst systems is not desirable. This is because the residual cobalt acts as a prooxidant leading to polymer instability during storage. This is a particular problem in cases where the TPBD is stored in a “hothouse” prior to usage, which is a standard procedure in many industries, such as the tire industry. In any case, high levels of residual cobalt in the TPBD lead to problems with polymer stability.
Unfortunately, carbon disulfide is typically required as a gel-reducing agent in the synthesis of TPBD with cobalt-based catalyst systems. This is particularly true in the case of continuous polymerization systems. However, the presence of carbon disulfide in such systems reduces the level of catalyst activity and generally makes it necessary to increase the level of cobalt in the catalyst system. Thus, in cases where carbon disulfide is required for gel control, the level of cobalt needed is further increased. This accordingly leads to greater polymer instability.
Due to its high melting point, it is normally necessary to heat TPBD in order for it to be processed using conventional mixing equipment, such as a Banbury mixer or a mill mixer. This heating step is typically carried out by storing the trans-1,4-polybutadiene in a “hothouse” for a few days prior to its usage. During this storage period, the bails of the polymer are slowly heated to a temperature above about 104° F. (40° C.). At such temperatures, the polymer can be readily processed in standard mixing equipment. However, the TPBD typically undergoes undesirable oxidative crosslinking which leads to gelation during this long heating period. This oxidation can crosslink the TPBD to such a high degree that it cannot be processed utilizing standard mixing techniques. In other words, the oxidative gelation that occurs can destroy the polymer.
U.S. Pat. No. 5,854,351 discloses that TPBD which contains a processing oil can be rapidly heated by radio frequency electromagnetic radiation. The radio frequency waves used in such a heating process typically have a frequency that is within the range of about 2 to 80 MHz (megahertz). By utilizing such a technique, an 80-pound (30 kg) bail of TPBD can be rapidly heated to a temperature above 104° F. (40° C.) in a matter of minutes. During this rapid heating process, oxidative gelation does not occur to a significant degree. This is, of course, in contrast to conventional heating techniques where bails of TPBD are slowly warmed by convection heating to the required temperature over a period of days. During this long heating period, the TPBD undergoes highly undesirable oxidative crosslinking.
U.S. Pat. No. 5,854,351 more specifically discloses a technique for mixing trans-1,4-polybutadiene with at least one rubbery polymer which comprises: (1) heating the trans-1,4-polybutadiene to a temperature which is within the range of 105° F. (41° C.) to 200° F.(93° C.) by exposing it to electromagnetic radiation having a frequency in the range of about 2 MHz to about 80 MHz, wherein the trans-1,4-polybutadiene is oil-extended with at least 10 phr of a processing oil; and (2) mixing the trans-1, 4-polybutadiene with said rubbery polymer before any portion of the trans-1,4-polybutadiene cools to a temperature below 104° F. (41° C.).
U.S. Pat. No. 5,100,965 discloses a process for synthesizing a high trans polymer which comprises adding (a) at least one organolithium initiator, (b) an organoaluminum compound, (c) a barium alkoxide and (d) a lithium alkoxide to a polymerization medium which is comprised of an organic solvent and at least one conjugated diene monomer.
U.S. Pat. No. 5,100,965 further discloses that high trans polymers can be utilized to improve the characteristics

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for synthesizing trans-1,4-polybutadiene does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for synthesizing trans-1,4-polybutadiene, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for synthesizing trans-1,4-polybutadiene will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3129553

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.