Process for sulfurizing catalysts in a reducing medium

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Sulfur or compound containing same

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S202000, C502S203000, C502S204000, C502S206000, C502S207000, C502S208000, C502S209000, C502S210000, C502S211000, C502S217000

Reexamination Certificate

active

06432867

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a process for sulphurising supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB, group VB (groups 3, 4, 5 in the new notation for the periodic table: “Handbook of Chemistry and Physics, 76
th
edition, 1995-1996, inside front. cover), at least one porous matrix, generally an amorphous or low crystallinity oxide type matrix, optionally at least one zeolitic or non zeolitic molecular sieve, optionally at least one element selected from groups VIB and VIII (groups 6, 8, 9, 10 in the new notation for the periodic table), optionally at least one element selected from the group formed by P, B, Si, and optionally at least one element from group VIIA (group 17). The process for preparing the sulphurised catalyst is characterized in that the catalyst is sulphurised by at least one compound containing elemental sulphur in an atmosphere of at least one reducing gas other than hydrogen.
The present invention also relates to the catalysts obtained using the process of the present invention.
The present invention also relates to any reaction for hydrorefining and hydroconverting the sulphide catalysts obtained as catalysts for hydrogenation, hydrodenitrogenation, hydrodeoxygenation, hydrodearomatisation, hydrodesulphurisation, hydrodemetallisation and hydrocracking of hydrocarbon-containing feeds containing at least one aromatic and/or olefinic and/or naphthenic and/or paraffinic type compound, said feeds possibly containing metals and/or nitrogen and/or oxygen and/or sulphur.
The sulphides can be synthesised by a number of methods which are well known to the skilled person.
BACKGROUND OF THE INVENTION
Crystallised transition metal or rare earth sulphides can be synthesised by reacting transition metal or rare earth type elements with elemental sulphur at high temperature in a process which is well known to the skilled person in the solid state chemistry field but is expensive, in particular as regards industrial application.
The synthesis of bulk or supported sulphides by reacting a suitable precursor in the form of a mixed oxide of transition metals or rare earth metals with a sulphur compound in a gas phase such as hydrogen sulphide or carbon disulphide, CS
2
, or mercaptans, sulphides, disulphides, hydrocarbon-containing polysulphides, sulphur vapour, COS, carbon disulphide, in a traversed bed reactor, is well known to the skilled person.
The synthesis of sulphides by reacting a suitable precursor in the form of a mixed oxide of transition metals and/or rare earths impregnated with a sulphur compound in the liquid phase followed by treatment in hydrogen in a traversed bed reactor is well known to the skilled person.
The synthesis of bulk sulphide catalysts or sulphide catalysts supported on a porous matrix by treatment of a bulk oxide precursor or an oxide precursor supported on a porous matrix in hydrogen with a sulphur-containing hydrocarbon feed, in particular sulphur-containing petroleum cuts such as gasoline, kerosene, gas oil, to which a sulphur compound, for example dimethyldisulphide, can optionally be added, is also well known to the skilled person.
Bulk sulphides can also be synthesised by co-precipitation, in a basic medium, of sulphur-containing complexes in solution containing two cations. This method can be carried out at a controlled pH and is termed homogeneous sulphide precipitation. It has been used to prepare a mixed sulphide of cobalt and molybdenum (G. Hagenbach, P. Courty, B. Delmon, Journal of Catalysis, volume 31, page 264, 1973).
Synthesising bulk mixed sulphides on a porous matrix by treatment of a bulk oxide precursor or an oxide precursor supported on a porous matrix in a hydrogen/hydrogen sulphide mixture or nitrogen/hydrogen sulphide mixture is also well known to the skilled person.
U.S. Pat. No. 4,491,639 describes the preparation of a sulphur-containing compound by reacting elemental sulphur with V, Mo, W salts and in particular V, Mo and W sulphides optionally containing at least one of elements from the series C, Si, B, Ce, Th, Nb, Zr, Ta, U in combination with Co or Ni.
Other methods have been proposed for the synthesis of simple sulphides. As an example, the synthesis of crystallised simple sulphides of rare earths described in U.S. Pat No. 3,748,095 and French patent FR-A-2 100 551 proceeds by reacting hydrogen sulphide or carbon disulphide with an amorphous rare earth oxide or oxycarbonate at a temperature of over 1000° C.
European patents EP-A-0 440 516 and U.S. Pat No. 5,279,801 describe a process for synthesising simple transition metal or rare earth sulphur-containing compounds by reacting a transition metal or rare earth compound with a carbon-containing sulphur compound in the gaseous state. in a closed vessel at a moderate temperature of 350° C. to 600° C.
However, it is well known that certain elements such as group IIIB elements, including the lanthanides and actinides, group IVB elements, and group VB elements, are very difficult to sulphurise. The known sulphurisation methods which are routinely used industrially and in the laboratory, such as sulphurisation in a gaseous hydrogen/hydrogen sulphide mixture or liquid phase sulphurisation under hydrogen pressure using a mixture of a hydrocarbon feed and a sulphur-containing compound such as dimethyldisulphide, are thus ineffective when sulphurising such solids.
SUMMARY OF THE INVENTION
The considerable amount of research carried out by the Applicant on preparing sulphide catalysts based on sulphides of elements from groups IIIB, IVB , VB and numerous other elements of the periodic table, used alone or as mixtures, associated with a matrix, have led to the discovery that, surprisingly, by reacting elemental sulphur with a powder containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB, group VB, possibly at least one element from group VIB and possibly at least one element from group VIII, in a closed or open vessel in an atmosphere of a reducing gas other than hydrogen, produces an amorphous or crystalline sulphide compound. Without wishing to be bound by any particular theory, it appears that sulphurisation is obtained by reducing a precursor compound containing the element or elements selected from group IIIB, including the lanthanides and actinides, group IVB, group VB, optionally at least one group VIB element and optionally at least one group VIII element, with the reducing gas with simultaneous sulphurisation of the reduced element by the sulphur until the precursor containing the element or elements selected from group IIIB, including the lanthanides and actinides, group IVB, group VB, and optionally at least one group VIII element, is exhausted.
The invention relates to preparing sulphurised catalysts, characterized in that the catalyst is sulphurised by a compound containing elemental sulphur in an atmosphere of at least one reducing gas other than hydrogen.
More precisely, a process for producing the sulphide catalysts of the present invention consists in:
a) forming a reaction mixture which comprises: a powder or mixture of powders containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB and group VB, at least one porous matrix which is generally an amorphous or low crystallinity oxide type matrix, optionally at least one zeolitic or non zeolitic molecular sieve, optionally at least one group VIB element, optionally at least one group VIII element, optionally at least one source of an element selected from the group formed by P, B and Si, optionally at least one source of anions from group VIIA, at least one source of elemental sulphur, optionally a source of carbon, and optionally water;
b) maintaining the reaction mixture obtained after step a) at a heating temperature of more than 40° C. at a pressure of over 0.01 MPa of at least one reducing gas other than hydrogen in a reactor.
The reactor may be a closed reactor. In this case, it may be charg

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for sulfurizing catalysts in a reducing medium does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for sulfurizing catalysts in a reducing medium, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for sulfurizing catalysts in a reducing medium will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2938623

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.