Bleaching and dyeing; fluid treatment and chemical modification – Cleaning or laundering – Dry cleaning
Reexamination Certificate
1999-12-17
2002-04-09
Einsmann, Margaret (Department: 1751)
Bleaching and dyeing; fluid treatment and chemical modification
Cleaning or laundering
Dry cleaning
C134S013000, C556S456000
Reexamination Certificate
active
06368359
ABSTRACT:
TECHNICAL FIELD
The present invention is directed to a process, more specifically, to a process for stabilizing silicone dry cleaning solvents containing basic impurities.
BACKGROUND
Current dry cleaning technology uses perchloroethylene (“PERC”) or petroleum-based materials as the cleaning solvent. PERC suffers from toxicity and odor issues. The petroleum-based products are not as effective as PERC in cleaning garments. Volatile siloxanes are being introduced into the dry cleaning industry as an alternative to PERC. However, there exists a need to stabilize the siloxane solvents to prevent undesirable cyclic siloxane (D
4
) formation and polymerization.
Methods for the purification of organopolysiloxanes have previously been reported, but they have not been reported for the purification of certain cyclic siloxanes (D
5
). Methods for purifying organopolysiloxanes utilizing elemental metals has been reported (see U.S. Pat. No. 5,245,067). Other patents disclose the purification of polyether silicones by contacting with an aqueous acid and removing the odorous materials formed (see U.S. Pat. No. 5,118,764), or the reaction with hydrogen and a hydrogenation catalyst (see U.S. Pat. No. 5,225,509). Hexamethyldisiloxane has been purified by successive treatments with a condensation catalyst, washing with water, separating the phases, distilling the siloxane, treating with acid clay and then treating with activated carbon (see U.S. Pat. No. 4,774,346). Siloxanes have also been purified by contacting with steam and distilling out the impurities (see EP 543 665). A deodorization method utilizing active carbon to which a functional group has been fixed through a silanol bond has been reported (see U.S. Pat. No. 5,238,899). Finally, a method was reported for purifying silicone oil by adding a drying agent and an adsorption agent to silicone and passing a low water vapor inert gas through the system (see U.S. Pat. No. 4,661,612).
What is needed in the art is an aqueous extraction system that renders the base catalyst inactive, stabilizes the siloxane and suppresses reequilibration and polymerization.
SUMMARY OF THE INVENTION
In a first aspect, the present invention is directed to a method for stabilizing silicone dry cleaning solvents that may contain an undesirable basic impurity capable of causing cyclic siloxane formation, comprising contacting the silicone solvent with an aqueous solution to purify the solvent and then separating the silicone solvent.
The process of the present invention is effective in preventing formation of certain cyclic siloxanes (i.e., D
4
) that are undesirable in the silicone solvent.
As used herein, the terms D
4
, D
5
and D
6
refer to cyclic siloxanes having the formula: —(R
2
SiO)
x
— where x is 4, 5 or 6 (i.e., D
5
is decamethylcyclopentasiloxane).
DETAILED DESCRIPTION OF THE INVENTION
Preferably, the first preferred embodiment of the method of the present invention comprises, contacting a silicone dry cleaning solvent that may contain an undesirable basic impurity capable of causing cyclic siloxane formation with an aqueous solution, agitating to ensure good mixing of the solvent and the aqueous solution, and separating the silicone solvent. The aqueous solution can be a salt solution or a series of dilute aqueous acid and base solutions.
Base catalysts that promote reequilibration and redistribution include, but are not limited to, potassium silanolate, potassium hydroxide, tetramethylammonium hydroxide, tetrabutylphosphonium hydroxide and the like.
Solutions suitable as extractants are aqueous solutions of the formula:
MeX
wherein Me refers to alkali metals and alkaline earth metals, such as sodium, magnesium, potassium, calcium and the like, and X refers to halogens, such as chlorine, bromine, fluorine and the like, or chalcogen derivatives, such as sulfates, carbonates, bicarbonates, acetates and the like. Examples of suitable solutions include but are not limited to sodium chloride, potassium chloride, sodium bromide, magnesium sulfate and the like.
Also suitable are dilute aqueous acid mixtures and base mixtures such as acetic acid, citric acid, sorbic acid, sodium carbonate and sodium bicarbonate.
After extraction, the silicone solvent may be dried with a suitable drying agent such as 4A molecular sieves, 13X molecular sieves, magnesium sulfate, calcium chloride and calcium sulfate.
Preferably, the silicone dry cleaning solvent is a volatile linear, branched, cyclic or a combination thereof, siloxane.
Compounds suitable as the linear or branched, volatile siloxane solvent of the present invention are those containing a polysiloxane structure that includes from 2 to 20 silicon atoms. Preferably, the linear or branched, volatile siloxanes are relatively volatile materials, having, for example, a boiling of below about 300° C. point at a pressure of 760 millimeters of mercury (“mm Hg”).
In a preferred embodiment, the linear or branched, volatile siloxane comprises one or more compounds of the structural formula (I):
M
2+y+2z
D
x
T
y
Q
z
(I)
wherein:
M is R
1
3
SiO
1/2
;
D is R
2
2
SiO
2/2
;
T is R
3
SiO
3/2
;
and Q is SiO
4/2
R
1
, R
2
and R
3
are each independently a monovalent hydrocarbon radical; and
x and y are each integers, wherein 0≦x≦10 and 0≦y≦10 and 0≦z≦10.
Suitable monovalent hydrocarbon groups include acyclic hydrocarbon radicals, monovalent alicyclic hydrocarbon radicals, monovalent and aromatic hydrocarbon radicals. Preferred monovalent hydrocarbon radicals are monovalent alkyl radicals, monovalent aryl radicals and monovalent aralkyl radicals.
As used herein, the term “(C
1
-C
6
)alkyl” means a linear or branched alkyl group containing from 1 to 6 carbons per group, such as, for example, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, preferably methyl.
As used herein, the term “aryl” means a monovalent unsaturated hydrocarbon ring system containing one or more aromatic rings per group, which may optionally be substituted on the one or more aromatic rings, preferably with one or more (C
1
-C
6
)alkyl groups and which, in the case of two or more rings, may be fused rings, including, for example, phenyl, 2,4,6-trimethylphenyl, 2-isopropylmethylphenyl, 1-pentalenyl, naphthyl, anthryl, preferably phenyl.
As used herein, the term “aralkyl” means an aryl derivative of an alkyl group, preferably a (C
2
-C
6
)alkyl group, wherein the alkyl portion of the aryl derivative may, optionally, be interrupted by an oxygen atom, such as, for example, phenylethyl, phenylpropyl, 2-(1-naphthyl)ethyl, preferably phenylpropyl, phenyoxypropyl, biphenyloxypropyl.
In a preferred embodiment, the monovalent hydrocarbon radical is a monovalent (C
1
-C
6
)alkyl radical, most preferably, methyl.
In a preferred embodiment, the linear or branched, volatile siloxane comprises one or more of, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, dodecamethylpentasiloxane, tetradecamethylhexasiloxane or hexadecamethylheptasiloxane or methyltris(trimethylsiloxy)silane. In a more highly preferred embodiment, the linear or branched, volatile siloxane of the present invention comprises octamethyltrisiloxane, decamethyltetrasiloxane, or dodecamethylpentasiloxane or methyltris(trimethylsiloxy)silane. In a highly preferred embodiment, the siloxane component of the composition of the present invention consists essentially of decamethyltetrasiloxane.
Suitable linear or branched volatile siloxanes are made by known methods, such as, for example, hydrolysis and condensation of one or more of tetrachlorosilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, or by isolation of the desired fraction of an equilibrate mixture of hexamethyldisiloxane and octamethylcyclotetrasiloxane or the like and are commercially available.
Compounds suitable as the cyclic siloxane component of the present invention are those containing a polysiloxane ring structure that includes from 2 to 20 silicon atoms in the ring. Preferably, the linear, volatile siloxanes and cyclic
Perry Robert J.
Riccio Donna A.
Einsmann Margaret
General Electric Company
LandOfFree
Process for stabilization of dry cleaning solutions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for stabilization of dry cleaning solutions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for stabilization of dry cleaning solutions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2926391