Process for separating ethane and ethylene by solvent...

Mineral oils: processes and products – Chemical conversion of hydrocarbons – With preliminary treatment of feed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C208S340000, C208S341000, C208S347000, C208S350000, C208S351000, C208S130000, C208S313000, C585S259000, C585S800000, C585S802000, C585S809000, C585S650000, C095S169000, C095S187000, C095S188000, C095S206000, C095S209000, C095S238000, C095S240000

Reexamination Certificate

active

06358399

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATION
This application is related to Applicants' concurrently filed application Attorney Docket No. PET 1870, entitled “Process And Device For Separating Ethane And Ethylene From A Steam-Cracking Effluent By Solvent Absorption And Hydrogenation Of The Solvent Phase”, based on French Application No. 99/10.578 filed Aug. 17, 1999.
The invention relates to a process for separating ethylene and ethane from a hydrocarbon steam-cracking effluent that contains in particular ethane, ethylene and acetylenic compounds.
The production of ethylene and propene by steam-cracking of hydrocarbons uses processes that make it possible to separate the ethylene and the propene from lighter gases that are contained in the effluents of cracked gases. Crude ethylene and propene (C
2
/C
3
fractions) also contain undesirable acetylenic compounds that should be recovered. When these compounds are desired as co-products, they can be extracted by a solvent. Such processes are, however, very dangerous because of the instability of highly concentrated acetylenic compounds.
The prior art is illustrated by Patent Applications U.S. Pat. No. 3,755,488, EP-A-0 825 245 and WO-93 24428.
The acetylenic compounds conventionally are converted into ethylene and propene by hydrogenation. A process for separating ethylene from methane via at least one distillation column (demethanizer) whose top fraction is condensed at a very low temperature by the ethylene is known by Patent U.S. Pat. No. 4,900,347.
These condensation conditions require the use of stainless steel material and consume a lot of energy.
A process of another type (ALCET, registered trademark) that is less expensive was described by LAM, W. K., AICHE Spring National Meeting April 1986, New Orleans. It comprises, in a series, a distillation stage (deethenizer, in English, to draw off C3
+
hydrocarbons at the bottom of the column, or depropanizer, in English, to draw off C
4
+
hydrocarbons at the bottom of the column), a compression stage of the top gaseous fraction, a stage for hydrogenation of this gaseous fraction, a stage for separating a gaseous phase that is introduced into a solvent absorption column, and a liquid phase that is recycled as reflux. At the top, the absorption column delivers a light phase that contains hydrogen and methane that is separated by condensation with propane and/or propene, and at the bottom, the column delivers a solvent phase that contains the desired C
2
compounds. This solvent phase is then regenerated, the solvent is recycled in the absorption column, and the desired C
2
compounds are recovered as feedstock of a subsequent downstream treatment, of polymerization, for example.
In such an ALCET process, the stages of compression and heating as well as the stage for hydrogenation of the acetylenic compounds take place in the presence of the entire top gaseous fraction that contains in particular hydrogen, carbon monoxide and methane. This involves larger-size equipment and larger investments. In addition, the reaction heat that is involved in the hydrogenation reactor and the fact of operating in vapor phase with excess hydrogen ensures that the temperature of the reactor has a tendency to increase, which can impair the selectivity of the hydrogenation reaction of the acetylenic compounds, whereby the ethylene can be partly hydrogenated in turn. To eliminate this, the ALCET process is carried out in the presence of two hydrogenation reactors with intermediate cooling.
These hydrogenation reactors can be accompanied by the formation of polymers (green oil) that gradually foul and deactivate the catalyst. Because the reactions are carried out in gaseous phase, these compounds cannot be washed and eliminated at least in part.
Finally, the presence of CO and H
2
can result in the formation of methane and water that it is necessary to eliminate in the downstream condensation treatment.
One of the objects of the invention is to eliminate the drawbacks of the prior art, in particular to obtain a mixture that contains at least 85% by weight of ethylene and that can be used directly for the synthesis of polyethylene and plastics.
Another object is to carry out at least in part a hydrogenation in liquid phase, which is very selective and which essentially eliminates all of the triple-bond compounds and the diene compounds.
It was noted that by first carrying out a stage where a steam-cracking effluent is absorbed by a solvent and in particular the one that is obtained from a furnace, for example, a ceramic furnace that operates at a very high temperature, then a hydrogenation stage in mixed liquid phase and vapor phase of the effluent at the bottom of the absorber and finally stages for separating effluents that are produced and that comprise a stage for regenerating solvent, a final product of ethylene and ethane of excellent quality was obtained at a reduced cost.
More specifically, the invention relates to a process for separating a mixture that consists essentially of ethane and ethylene from a hydrocarbon steam-cracking effluent, whereby the effluent comprises hydrogen, methane, ethane, acetylene, methylacetylene, propadiene, propene and hydrocarbons with at least 4 carbon atoms, and whereby the process is characterized in that:
Said feedstock is absorbed in at least one absorption column (
7
) by a cooled solvent phase under suitable absorption conditions, and a gaseous phase that contains in particular hydrogen and methane at the top of the column and a partly liquid phase (
12
) at the bottom of the column that contains the solvent that is enriched with ethylene, ethane, acetylene, methylacetylene, propadiene, propene and hydrocarbons with at least 4 carbon atoms are recovered;
the liquid phase is hydrogenated in at least one catalytic hydrogenation zone (
15
) in the presence of hydrogen and a hydrogenation catalyst under suitable hydrogenation conditions, and at least one liquid phase that is at least partly hydrogenated and that essentially does not contain acetylene is recovered;
The following stage sequence is carried out:
a) Said liquid phase that is at least in part hydrogenated is regenerated in at least a first distillation column (
70
), and there is recovered at the top of the column a gaseous phase (
71
) that is condensed to separate a vapor phase (
74
) and a phase (
75
) that essentially consists of hydrocarbons with at least two carbon atoms that are partly recycled as reflux, and at the bottom of the column a regenerated solvent phase (
26
,
9
);
b) Remaining portion (
76
) of the phase that consists essentially of hydrocarbons with at least two carbon atoms is circulated in at least a second distillation column (
77
), and there are recovered at the top a second phase (
78
) that is condensed to separate a second light gaseous phase (
81
); by a lateral draw-off, said mixture (
83
) that consists essentially of ethane and ethylene; and at the bottom of the column, a hydrocarbon-enriched fraction (
84
) with at least 3 carbon atoms.
Solvent phase (
26
) is cooled (
13
,
28
), and it is at least partly recycled in absorption column (
7
).
By carrying out the hydrogenation of a partly liquid phase that contains many fewer light compounds (H
2
, CH
4
) than the hydrogenation feedstock according to the ALCET process upstream from the solvent absorption stage, the temperature of the exothermic reaction that, moreover, is carried out toward 80° C. is monitored much better. In addition, a much more selective reaction is obtained, without loss of ethylene, in a reactor of smaller size and with a catalyst whose service life is increased because the polymeric compounds are washed by the liquid phase and eliminated by a downstream purge.
According to a characteristic of the process, the gaseous phase that contains in particular methane and hydrogen, obtained from the absorption column, is condensed at least in part to deliver a liquid phase (
52
) that is recycled at least in part as reflux in the column, and a vapor phase (
11
) that is high in methane and hydro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for separating ethane and ethylene by solvent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for separating ethane and ethylene by solvent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for separating ethane and ethylene by solvent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2862615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.