Abrading – Abrading process – Utilizing fluent abradant
Reexamination Certificate
2000-07-28
2002-07-09
Rachuba, M. (Department: 3723)
Abrading
Abrading process
Utilizing fluent abradant
C451S038000, C451S039000, C451S040000
Reexamination Certificate
active
06416389
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates in general to a process for treating surfaces and, more specifically, to a process for roughening the outer surface of a member.
Electrostatographic imaging members, such as photoreceptors, are conventionally utilized for copiers and printers and comprise a hollow electrically conductive drum substrate which has been dip coated with various coatings including at least one photoconductive coating comprising pigment particles dispersed in a film-forming binder. The photoconductive coating usually includes a charge generating layer and a charge transport layer. A problem experienced during the formation of electrostatic images on these electrostatographic imaging members using laser beam exposure techniques involves the undesirable formation of a plywood-like pattern in the electrostatic latent image (known as the “plywood effect” or the “interference fringe effect”) due to reflection of the laser beam that penetrated the charge generating layer of the imaging member to strike a normally smooth outer surface of a supporting substrate. This plywood-like pattern in the electrostatic latent image is converted to a visible toner image during development of the latent image. One of the reasons for this undesirable phenomenon is the reflective nature of the metal substrate used for the imaging member. To prevent this plywood effect, an expensive machining technique has been utilized to roughen the surface of the substrate to prevent reflection of the laser beam. Alternatively, or in addition to expensive machining, the outer surface of the substrate is roughened by techniques such as spraying an alumina (aluminum oxide) media/water slurry sprayed against the aluminum substrate surface. The alumina treated substrate surface is duller with micro-roughness, which reduces brightness and allows automatic visual inspection (AVI) systems to be used. Additionally, auto-density control lasers, which detect the degree of brightness in order to set up machine parameters for density control of the final image, may be used. If a machine is not within precise brightness ranges, the auto-density control cannot set up the machine. Unfortunately, even after cleaning of the roughened substrate surface, aluminum oxide media in the form of particles often adhere to the substrate surface to cause defects in imaging layer coatings subsequently formed on the substrate. These defects form unacceptable toner images. In addition, because of the abrasive nature of aluminum oxide media, the equipment used to apply the media to the substrate surface erodes rapidly resulting in equipment down time and expensive repairs. Generally, these aluminum oxide media comprise spherical beads. The alumina media is both costly and prone to stick to the substrate surfaces contributing to or resulting in unacceptable post coat defects. Thus, new imaging members having coatings containing aluminum oxide media are rejected and scrapped.
INFORMATION DISCLOSURE STATEMENT
U.S. Pat. No. 5,853,128 issued to Bowen et al. on Dec. 29, 1998—Method and apparatus are disclosed for controlling the exit velocity of solid/gas carbon dioxide spray cleaning systems. By increasing the pressure of liquid carbon dioxide in the supply line, typically in the range of 800-875 psi, to greater than 875 psi, preferably 2,000-5,000 psi and above, the velocity of the spray stream exiting the nozzle is increased enabling removal of contamination (oils, fingerprints, particles, graffiti, etc.) not removable with a spray stream using conventional carbon dioxide pressures. The apparatus includes the incorporation of a high-pressure pump in the liquid carbon dioxide supply line in combination with a nozzle having a first or inlet orifice smaller in diameter than the supply line and a second or exit orifice larger in diameter than the inlet orifice.
U.S. Pat. No. 5,782,263 issued to Isaacson, Jr. et al. on Jul. 21, 1998—A flood control device 200 is disclosed which measures the volume of fluid delivered in a continuous steady flow to a house or building and which shuts off the fluid flow if a preset maximum limit is reached, indicating overly high consumption due to a leak, break or open faucet in the plumbing of the house or building.
U.S. Pat. No. 5,766,368 issued to Bowers on Jun. 16, 1998—A method is disclosed of cleaning an integrated circuit chip module prior to attaching wire bonds thereto. The method involves disposing a module containing an integrated circuit chip and IC bond pads without wire bonds in an environmental process enclosure. A carbon dioxide jet spray cleaning system having a spray nozzle and orifice assembly is disposed the environmental process enclosure. A jet spray of carbon dioxide is generated using the jet spray cleaning system. The carbon dioxide jet spray is directed onto the surface of the module such that the spray impacts the IC bond pads and module bond pads to clean unwanted adhesive from the surface of the module and thus clean the IC and module bond pads.
U.S. Pat. No. 5,514,024 issued to Goenka on May 7, 1996—A CO
2
nozzle is disclosed which expels liquid CO
2
under pressure through an orifice therein for converting the liquid into CO
2
snow. The CO
2
nozzle is contained within an elongated mixing cavity within a body which is coupled to an exhaust nozzle for directing the CO
2
snow toward the workpiece. The CO
2
nozzle includes several wings for creating aerodynamic turbulence within the elongated mixing cavity for enhancing the coagulation of the CO
2
snow into larger CO
2
snow particles or CO
2
snowflakes.
U.S. Pat. No. 5,431,740 issued to Swain on Jul. 11, 1995—An apparatus is disclosed for cleaning cylindrical surfaces includes a plurality of cleaning stations. Each cleaning station is designed to receive a substrate and includes a plurality of nozzles. The inlet end of each nozzle is connected to a source of liquid Carbon Dioxide, and the outlet end of each nozzle is connected to one end of a respective Carbon Dioxide expansion chamber. Liquid Carbon dioxide leaving each nozzle is converted to solid Carbon Dioxide in the corresponding expansion chamber. The other end of each Carbon Dioxide expansion chamber is coupled to a respective funnel which is, in turn, connected to a dispersing saddle. The dispersing saddles disperse the stream of solid Carbon Dioxide particles leaving each funnel and direct these particles to the substrate surface. The dispersing saddles are placed such that the entire circumference of the substrate surface is enveloped within the various streams of solid Carbon Dioxide particles. In addition, the apparatus may include a source of a dry nonreactive gas which is introduced into each stream of solid Carbon Dioxide particles in order to reduce condensation on the surface from the surface of the substrate and to further direct each stream of solid Carbon Dioxide particles to the substrate surface.
U.S. Pat. No. 5,372,652 issued to Srikrishnan et al. on Dec. 13, 1994—An aerosol cleaning apparatus is disclosed for cleaning a substrate includes an aerosol producing means having a nozzle head. The nozzle head is positioned at a selected proximity and orientation to the substrate which is held by a rotatable holder. The aerosol spray dislodges particles from the substrate and the rotation of the substrate further assists in the removal of the loosened particles. A method of aerosol cleaning includes rotating a substrate at a preselected speed and spraying an aerosol jet in conjunction with the rotation to help in the removal of particles from the substrate.
U.S. Pat. No. 5,294,261 issued to McDermott et al. on Mar. 15, 1994—A method is disclosed for cleaning microelectronic surfaces using an aerosol of at least substantially solid argon or nitrogen particles which impinge upon the surface to be cleaned and then evaporate and the resulting gas is removed by venting along with the contaminants dislodged by the cleaning method.
U.S. Pat. No. 5,209,028 to McDermott et al, issued May 11, 1993—An apparatus is disclosed for cleaning semi-conductor so
Agarwala Rajiv S.
Arserio Gregory J.
Enos Carmen W.
Hendrix Loren E.
Morris Jodie L.
Rachuba M.
Thompson Robert
Xerox Corporation
LandOfFree
Process for roughening a surface does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for roughening a surface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for roughening a surface will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2918751