Compositions: coating or plastic – Coating or plastic compositions – Inorganic settable ingredient containing
Reexamination Certificate
2000-07-31
2002-07-16
Marcantoni, Paul (Department: 1755)
Compositions: coating or plastic
Coating or plastic compositions
Inorganic settable ingredient containing
C106S697000, C423SDIG001, C588S257000
Reexamination Certificate
active
06419738
ABSTRACT:
FIELD OF THE INVENTION
The present invention has for its object a process to stabilize and solidify wastes such as for example cinders, residues from incineration of household garbage and industrial wastes. The invention also relates to the pre-mix used to practice this process.
BACKGROUND OF THE INVENTION
Beginning in 2002, legislation will prevent the discharge of such wastes. These latter will be placed in storage sites after having been subjected to a stabilization process. This process consists in conferring on the product obtained, certain characteristics bearing on its leachable fraction and its mechanical strength. The leachable fraction is measured by means of standard leaching tests (X31-210 and X31-211). They permit measuring the quantities of pollutants that are salted out, as well as the soluble fraction. This change in legislation is for purposes of protecting the environment. Thus, these wastes contain numerous organic and mineral pollutants. In the absence of stabilization treatment the phenomena such as erosion by groundwater or rainwater, as well as the action of wind, risks giving rise to pollution of the soil and the phreatic layers.
There already exist numerous processes for stabilizing wastes. These are divided into three large groups:
vitrification processes: these are thermal processes which consist in totally melting the waste and any possible additives, then cooling them abruptly so as to obtain a solid having a vitreous appearance. This technique permits obtaining a material with an excellent chemical strength, but the direct thermal treatment of the waste is accompanied with the emission of chlorine, sulfur oxides or volatile heavy metals such as mercury, cadmium, and lead, injurious to the environment.
cladding processes with an organic binder (for example bitumen). These consist in mixing hot binder and waste, molding the obtained mixture in the desired shape, and letting it cool. The product obtained is heterogeneous when the waste is incorporated in the form of a granulate and relatively homogeneous when the waste is pulverized. In these two cases, there is no chemical reaction between the waste and the binder. As a result, when the product melts, for example under the influence of sunshine, the toxic elements are freed and can thus give rise to pollution. Moreover, the regulations concerning the admission of inert waste to storage sites are more and more severe as to their organic material content, which greatly limits the use of this type of process.
Solidification/stabilization processes with a hydraulic binder. These consist in mixing the waste with suitable binder or binders, if desired additives (fluidizer, filler . . . ) and water. The obtained slurry is then disposed on the storage site or molded in the form of blocks. The binders used are generally cements with certain additives which in contact with water react with each other or with constituents of the waste to form almost insoluble phases. These processes have several advantages. On the one hand, they give the solidified product a good mechanical strength and low porosity, which limits its contact surface with groundwaters. On the other hand, the phases of low solubility that form in the course of hydration, such as hydrated calcium silicates and hydrated calcium aluminates, affix a large number of pollutants, which limits the emission of harmful elements.
These latter are distinguished by the composition of the hydraulic binders used. They can be classified in three categories:
a) processes using hydraulic binders whose composition does not include cement. By way of example, U.S. Pat. No. 5,494,513 uses up to five constituents (a zeolite, lime, hemihydrate, sodium sulfate and aluminum sulfate); U.S. Pat. No. 5,484,533 uses six constituents: zeolite, quartz, aluminum hydroxide, sodium carbonate or sodium hydroxide, dolomite lime and finally potassium hydroxide or carbonate. The high number of these components therefore considerably complicates the composition of the inert binder. Moreover, the last-mentioned comprises a curing step between 80 and 120° C. which is both costly and dangerous, because it liberates lower hydrocarbons which can be present in the waste.
b) processes using hydraulic binders comprising a portion of cement and one or several additives permitting on the one hand using less cement and on the other hand promoting the fixation of the pollutants. Thus, JP 10-225669 uses a composition comprising cement and fly ash; EP 547923 uses a binder comprising cement and slag; FR 2758749 uses any cement to which is added a compound containing nitrate or nitrite ions so as to decrease swelling. This latter is dangerous because in the case of poor fixation of the nitrates in the course of hydration, the nitrate ions will be immediately released by the solidified product, the nitrated phases being generally highly soluble in water.
c) these processes use hydraulic binders comprising only cement. These are very effective but require a preliminary analysis of the waste to be stabilized so as to optimize the composition and the quantity of the cement to be used. Thus, EP 588689 foresees an elementary analysis of the wastes so as at least to know the calcium and soluble salt content. The composition of the inerting cement (in this instance an alumina cement) thus depends on this preliminary analysis. As a result, a change in the composition of the waste gives rise to a change in the composition of the cement to be used. This process therefore is complicated when the composition of the waste varies, which, according to its origin, is often the case.
SUMMARY OF THE INVENTION
An object of the present invention is therefore to provide a simple process, not involving excessive cost of application.
Another object is to provide a process which can be adapted to very numerous types of waste.
Moreover, the stabilized waste must also meet, in France, the criteria of acceptance at a storage site defined by the Official Journal of the French Republic (effective Feb. 18, 1994), whose mechanical criteria are less stringent (mechanical strength as low as 1 MPa being considered sufficient), but whose criteria as to the soluble fraction (10%) are more difficult to observe by present processes, at an acceptable economical level.
Another object of the present invention is therefore to provide a process which, by “neutralizing” the waste, permits obtaining a solid product having a low soluble fraction, which is to say less than 10% (according to the above standard).
These objects are achieved by a process of rendering waste inert, according to the invention, which belongs to the category of processes of cladding the waste in a cement-based hydraulic binder, the process being characterized by the fact that the inerting hydraulic binder comprises sulfoaluminate cement comprised by at least 30% by weight of the phase 3CaO.3Al
2
O
3
.CaSO
4
(C
4
A
3
{overscore (S)}).
It has been discovered in a surprising manner that the use of cements containing a high proportion (≧30%) of the calcium sulfoaluminate phase (CSA), for rendering waste inert, permits obtaining a soluble fraction less than that obtained with other cements, such as for example aluminous cement or Portland cement. An explanation could be that during hydration of the CSA phase, which reacts with water to form hydrated phases such as ettringite and calcium monothioaluminate, also reacts with metallic cations and soluble anions present in the waste by cladding them in their crystalline matrix. This mode of chemical securement and the low solubility of the hydrates results in an excellent retention of the soluble pollutants.
According to a first modification of the invention, the hydraulic binder is constituted essentially of said sulfoaluminate cement, the binder being preferably used in proportions comprised between 15 and 150 parts by weight, preferably between about 25 and 100 parts per weight per 100 parts of waste, for example incineration residues of household waste.
According to a second modification of the invention, the hydraulic binde
Classen Bruno
Colombet Pierre
Le Rolland Bruno
Ciments Francais
Marcantoni Paul
Young & Thompson
LandOfFree
Process for rendering waste inert by cladding in a hydraulic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for rendering waste inert by cladding in a hydraulic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for rendering waste inert by cladding in a hydraulic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2827311