Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...
Reexamination Certificate
2000-06-19
2001-12-25
Cintins, Ivars (Department: 1724)
Liquid purification or separation
Processes
Liquid/liquid solvent or colloidal extraction or diffusing...
C210S646000, C210S681000, C210S903000
Reexamination Certificate
active
06332985
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a process for removing toxins from fluids such as bodily fluids or dialysate solution. The fluid is contacted with a microporous ion exchange composition to remove toxins such as ammonium ions.
BACKGROUND OF THE INVENTION
In mammals, e.g., humans, when the kidneys and/or liver fail to remove metabolic waste products from the body, most of the other organs of the body also soon fail. Accordingly, extensive efforts have been made to discover safe and effective methods for removing toxins from patients' blood by extracorporeal treatment of the blood. Many methods have been proposed for removing small molecular toxins, protein-bound molecules or larger molecules thought to be responsible for the coma and illness of hepatic failure. Some of these toxic compounds have been identified as urea, creatine, ammonia, phenols, mercaptans, short chain fatty acids, aromatic amino acids, false neural transmitters (octopamine), neural inhibitors (glutamate) and bile salts. Among these, phenols and mercaptans, along with bilirubin and bacterial endotoxins, also occur as strong protein-bound toxins and are thus more difficult to effectively remove from the blood. Middle molecular weight toxins having a molecular weight of about 300 to about 10,000 can also be present and are difficult to effectively remove.
The art shows a number of ways to treat blood containing such toxins. The classic method is of course dialysis. Dialysis is defined as the removal of substances from a liquid by diffusion across a semipermeable membrane into a second liquid. Dialysis of blood outside of the body (hemodialysis) is the basis of the “artificial kidney.” The artificial kidney treatment procedure generally used today is similar to that developed by Kolff in the early 1940s.
Since the 1940s there have been a number of disclosures which deal with improvements on artificial kidneys or artificial livers. Thus, U.S. Pat. No. 4,261,828 discloses an apparatus for the detoxification of blood. The apparatus comprises a housing filled with an adsorbent such as charcoal or a resin and optionally an enzyme carrier. In order to prevent direct contact between the blood and the adsorbent, the adsorbent may be coated with a coating which is permeable for the substances to be adsorbed yet prevent the direct contact between the corpuscular blood components and the adsorbents. U.S. Pat. No. 4,581,141 discloses a composition for use in dialysis which contains a surface adsorptive substance, water, a suspending agent, urease, a calcium-loaded cation exchanger, an aliphatic carboxylic acid resin and a metabolizable organic acid buffer. The calcium loaded cation exchanger can be a calcium-exchanged zeolite. EP 0 046 971 A1 discloses that zeolite W can be used in hemodialysis to remove ammonia. Finally, U.S. Pat. No. 5,536,412 discloses hemofiltration and plasmafiltration devices in which blood flows through the interior of a hollow fiber membrane and during the flow of blood, a sorbent suspension is circulated against the exterior surfaces of the hollow fiber membrane. Another step involves having the plasma fraction of the blood alternately exit and re-enter the interior of the membrane thereby effectuating removal of toxins. The sorbent can be activated charcoal along with an ion-exchanger such as a zeolite or a cation-exchange resin.
There are problems associated with the adsorbents disclosed in the above patents. For example, charcoal does not remove any water, phosphate, sodium or other ions. Zeolites have the disadvantage that they can partially dissolve in the dialysis solution, allowing aluminum and/or silicon to enter the blood. Additionally, zeolites can adsorb sodium, calcium and potassium ions from the blood thereby requiring that these ions be added back into the blood.
Applicants have developed a process which uses microporous ion exchangers which are essentially insoluble in fluids, such as bodily fluids (especially blood) or dialysis solutions. These microporous ion exchangers have an empirical formula on an anhydrous basis of:
A
p
M
x
Zr
1−x
Si
n
Ge
y
O
m
(I)
or
A
p
M
x
Ti
1−x
Si
n
Ge
y
O
m
(II)
where A is an exchangeable cation selected from the group consisting of potassium ion, sodium ion, rubidium ion, cesium ion, calcium ion, magnesium ion, hydronium ion or mixtures thereof, M is at least one framework metal selected from the group consisting of hafnium (4+), tin (4+), niobium (5+), titanium (4+), cerium (4+), germanium (4+), praseodymium (4+), and terbium (4+), except that M is not titanium in formula (II), “p” has a value from about 1 to about 20, “x” has a value from zero to less than 1, “n” has a value from about 0 to about 12, “y” has a value from 0 to about 12, “m” has a value from about 3 to about 36 and 1≦n+y≦12. The germanium can substitute for the silicon, zirconium/titanium or combinations thereof. Since these compositions are essentially insoluble in bodily fluids (at neutral or basic pH), they can be orally ingested in order to remove toxins in the gastrointestinal system.
SUMMARY OF THE INVENTION
As stated, this invention relates to a process for removing toxins from fluids selected from the group consisting of a bodily fluid, a dialysate solution and mixtures thereof, the process comprising contacting the fluid containing the toxins with a microporous ion exchanger at ion exchange conditions thereby removing the toxins from the fluid, the microporous ion exchanger selected from the group consisting of zirconium metallate, titanium metallate and mixtures thereof, the metallates respectively having an empirical formula on an anhydrous basis of:
A
p
M
x
Zr
1−x
Si
n
Ge
y
O
m
(I)
and
A
p
M
x
Ti
1−x
Si
n
Ge
y
O
m
(II)
where A is an exchangeable cation selected from the group consisting of potassium ion, sodium ion, calcium ion, magnesium ion and mixtures thereof, M is at least one framework metal selected from the group consisting of hafnium (4+), tin (4+), niobium (5+), titanium (4+), cerium (4+), germanium (4+), praseodymium (4+), and terbium (4+), except that M is not titanium in formula (II), “p” has a value from about 1 to about 20, “x” has a value from zero to less than 1, “n” has a value from about 0 to about 12, “y” has a value from 0 to about 12, “m” has a value from about 3 to about 36 and 1≦n+y≦12.
In a specific embodiment toxins are removed from the human body by:
a) Filling the peritoneal cavity with a sufficient volume of dialysate solution such that the solution contacts the peritoneum for a sufficient time to remove toxins from the blood;
b) Discharging the dialysate solution from the peritoneal cavity and flowing the dialysate solution through at least one bed containing the microporous ion exchanger described above at ion exchange conditions, thereby adsorbing the toxins on the exchanger; and
c) Collecting a purified dialysate solution.
This and other objects and embodiments will become more clear after a detailed description of the invention.
DETAILED DESCRIPTION OF THE INVENTION
As stated, applicants have developed a new process for removing various toxins from fluids selected from bodily fluids and dialysate solution. One essential element of the instant process is a microporous ion exchanger which has a large capacity and strong affinity, i.e., selectivity for at least ammonia. These microporous compositions are identified as zirconium metallate and titanium metallate compositions. They are further identified by their empirical formulas (on an anhydrous basis) which respectively are:
A
p
M
x
Zr
1−x
Si
n
Ge
y
O
m
(I)
or
A
p
M
x
Ti
1−x
Si
n
Ge
y
O
m
(II)
In the case of formula I, the composition has a microporous framework structure composed of ZrO
3
octahedral units and at least one of SiO
2
tetrahedral units and GeO
2
tetrahedral units. In the case of formula II, the microporous framework structure is composed of TiO
3
o
Bem David S.
Lewis Gregory J.
Sherman John D.
Cintins Ivars
Molinaro Frank S.
Tolomei John G.
UOP LLC
LandOfFree
Process for removing toxins from bodily fluids using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for removing toxins from bodily fluids using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for removing toxins from bodily fluids using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2598662