Process for removing contaminants from water

Cleaning and liquid contact with solids – Processes – Work handled in bulk or groups

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S029000, C210S708000, C252S088100, C510S350000, C588S249000

Reexamination Certificate

active

06584988

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT:
Not Applicable.
BACKGROUND OF THE INVENTION
The present invention generally relates to a process for water remediation. More particularly, the present invention provides a process for emulsifying and subsequently removing contaminants from water by combining them with a mixture of an alkyl polyglycoside and a fatty alcohol having from 12 to 14 carbon atoms.
Soil can become contaminated by volatile organic compounds (VOC's) in a variety of ways. Leaking fuel tanks and pipelines, either above ground or below, frequently contaminate soil with gasoline or diesel fuel. Underground tanks and pipelines can be particularly prone to leaks as they may have been in use for many years and, because they are buried in the soil, a slow leak may go undetected for some period of time. Industrial waste discharge and industrial accidents may also contribute to contamination of soil by VOC's.
Aside from the soil itself becoming contaminated, undesirable contaminants can, and often do, enter into both pools of water and aquifers. An aquifer is generally defined as an area of water bearing rock.
In the event that water becomes contaminated, it is insufficient to merely clean the surrounding rock and soil. The water itself must be remediated as well. Heavy contaminants can sink to the bottom of an aquifer, while lighter contaminants may float to the surface of the water. In the event that the contaminants are not removed from the water, because they are water borne they will over time, become redeposited back onto the soil and rock. It is therefore necessary to remove any and all contaminants from both the water, as well as the soil, simultaneously.
Since cleaning in situ is the most preferable way to decontaminate soil and water, the chemicals that are to be used in the cleaning process should be biodegradable and pose no threat to the environment.
BRIEF SUMMARY OF THE INVENTION
The present invention is directed to a process for remediating soil, rock and water containing unwanted contaminants involving the steps of: (1) forming an emulsifier by combining: (a) a sugar surfactant selected from the group consisting of an alkyl polyglycoside having the general formula I:
R
1
O
(
R
2
O
)
b
(
Z
)
a
  (I)
wherein R
1
is a monovalent organic radical having from about 6 to about 30 carbon atoms; R
2
is a divalent alkylene radical having from 2 to 4 carbon atoms; Z is a saccharide residue having 5 or 6 carbon atoms; b is a number having a value from 0 to about 12; a is a number having a value from 1 to about 6, a glucamide having the general formula II:
wherein R
3
is H, C
1
-C
4
hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C
1
-C
4
alkyl, more preferably C
1
or C
2
alkyl, most preferably C
1
alkyl (i.e., methyl); and R
4
is a C
5
-C
3
, hydrocarbyl moiety, preferably straight chain C
7
-C
19
alkyl or alkenyl, more preferably straight chain C
9
-C
17
alkyl or alkenyl, most preferably straight chain C
11
-C
19
alkyl or alkenyl, or mixture thereof; and Y is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof, and mixtures thereof; and (b) a nonionic surfactant, other than the above-identified sugar surfactant which, when combined with the sugar surfactant, provides an emulsifier having a hydrophilic-lipophilic balance of from about 8.0 to about 13.0; (2) mixing the emulsifier with an unwanted contaminant to form a stable emulsion having a hydrophilic-lipophilic balance of about 10; and (3) removing the stable emulsion from the soil, rock and water.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
Not Applicable.
DETAILED DESCRIPTION OF THE INVENTION
Other than in the operating examples, or where otherwise indicated, all number expressing quantities of ingredients or reaction conditions used herein are to be understood as being modified in all instances by the term “about”.
The alkyl polyglycosides which can be used in the process of the invention to form the emulsifier are those which correspond to formula I:
R
1
O
(
R
2
O
)
b
(
Z
)
a
  (I)
wherein R
1
is a monovalent organic radical having from about 6 to about 30 carbon atoms; R
2
is a divalent alkylene radical having from 2 to 4 carbon atoms; Z is a saccharide residue having 5 or 6 carbon atoms; b is a number having a value from 0 to about 12; a is a number having a value from 1 to about 6. Preferred alkyl polyglycosides which can be used in the compositions according to the invention have the formula I wherein Z is a glucose residue and b is zero. Such alkyl polyglycosides are commercially available, for example, as APG®, GLUCOPON®, or PLANTAREN® surfactants from Henkel Corporation, Ambler, Pa., 19002. Examples of such surfactants include but are not limited to:
1. GLUCOPON® 225 Surfactant—an alkyl polyglycoside in which the alkyl group contains 8 to 10 carbon atoms and having an average degree of polymerization of 1.7.
2. GLUCOPON® 425 Surfactant—an alkyl polyglycoside in which the alkyl group contains 8 to 16 carbon atoms and having an average degree of polymerization of 1.55.
3. GLUCOPON® 625 Surfactant—an alkyl polyglycoside in which the alkyl group contains 12 to 16 carbon atoms and having an average degree of polymerization of 1.6.
4
. APG® 325 Surfactant—an alkyl polyglycoside in which the alkyl group contains 9 to 11 carbon atoms and having an average degree of polymerization of 1.6.
5. GLUCOPON® 600 Surfactant—an alkyl polyglycoside in which the alkyl group contains 12 to 16 carbon atoms and having an average degree of polymerization of 1.4.
6. PLANTAREN® 2000 Surfactant—a C
8-16
alkyl polyglycoside in which the alkyl group contains 8 to 16 carbon atoms and having an average degree of polymerization of 1.4.
7. PLANTAREN® 1300 Surfactant—a C
12-16
alkyl polyglycoside in which the alkyl group contains 12 to 16 carbon atoms and having an average degree of polymerization of 1.6.
Other examples include alkyl polyglycoside surfactant compositions which are comprised of mixtures of compounds of formula I wherein Z represents a moiety derived from a reducing saccharide containing 5 or 6 carbon atoms; a is a number having a value from I to about 6; b is zero; and R
1
is an alkyl radical having from 8 to 20 carbon atoms. The compositions are characterized in that they have increased surfactant properties and an HLB in the range of about 10 to about 16 and a non-Flory distribution of glycosides, which is comprised of a mixture of an alkyl monoglycoside and a mixture of alkyl polyglycosides having varying degrees of polymerization of 2 and higher in progressively decreasing amounts, in which the amount by weight of polyglycoside having a degree of polymerization of 2, or mixtures thereof with the polyglycoside having a degree of polymerization of 3, predominate in relation to the amount of monoglycoside, said composition having an average degree of polymerization of about 1.8 to about 3. Such compositions, also known as peaked alkyl polyglycosides, can be prepared by separation of the monoglycoside from the original reaction mixture of alkyl monoglycoside and alkyl polyglycosides after removal of the alcohol. This separation may be carried out by molecular distillation and normally results in the removal of about 70-95% by weight of the alkyl monoglycosides. After removal of the alkyl monoglycosides, the relative distribution of the various components, mono- and poly-glycosides, in the resulting product changes and the concentration in the product of the polyglycosides relative to the monoglycoside increases as well as the concentration of individual polyglycosides to the total, i.e., DP2 and DP3 fractions in relation to the sum of all DP fractions. Such compositions are disclosed in U.S. Pat. No. 5,266,690, the entire contents of which are incorporated herein by reference.
Other alkyl polyglycosides wh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for removing contaminants from water does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for removing contaminants from water, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for removing contaminants from water will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3007613

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.