Process for removal of undesirable conductive material on a...

Coating processes – Electrical product produced – Integrated circuit – printed circuit – or circuit board

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S098300, C427S304000, C427S337000, C427S437000, C427S443100

Reexamination Certificate

active

06544584

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to circuitized substrates and more specifically to a process for removal of undesirable conductive material (e.g., a catalyst layer) on a printed circuit and the resultant printed circuit.
2. Description of the Related Art
In the manufacture of printed circuit boards, a conductive circuit pattern is provided on at least one surface of a dielectric substrate. The circuit pattern can be formed on the substrate using a variety of known techniques. One of the better known techniques includes the electroless direct bond (EDB) technique, wherein copper is electrolessly plated directly onto the surface of the substrate in a desired pattern. The circuit pattern may include conductor lines on the surface of the substrate as well as in holes (often referred to as plated through holes) which connect one or more of the conductive layers together. Since the dielectric substrate is non-conductive, it is generally necessary to catalyze the substrate prior to deposition of the conductive metal onto the substrate. Among the more widely employed procedures for catalyzing is to deposit colloidal particles of palladium (Pd) and tin (Sn) onto the substrate. A resist layer is then applied over the catalyst layer. A circuit pattern is formed by first removal of portions of the resist through masking techniques. Then, a copper metallic coating can then be applied to the exposed catalyzed areas or areas where the resist has been removed by way of known processing such as electroless deposition techniques to form the circuit pattern. Following the electroless deposition of the metallic coating, the remaining resist is removed.
One of the difficulties not adequately addressed heretofore occurs after the remaining resist has been removed, a residual catalyst layer (e.g., tin and palladium layer) remains between the circuit features (e.g. lines) of the circuit pattern. The term “residual” as used hereinafter, refers to undesirable material between circuit features of the circuit pattern. Another difficulty is that when the catalyst layer has a circuit pattern deposited thereon, trace amounts of the circuit material (e.g., copper) in the circuit pattern, seep under the resist into the residual catalyst layer which causes further electrical shorting. If the catalyst layer and residual circuit material are not adequately removed, electrical shorting between the circuit features of the finished circuit pattern occurs due to the residual catalyst material and residual seeped circuit material (e.g., copper).
U.S. Pat. No. 4,718,972 assigned to International Business Machines Corporation discloses one proposed method of making a PCB wherein metallic seed (catalyst) particles are applied to a surface of a substrate. An image of the desired conductor pattern is defined by a maskant layer to permit the subsequent electroless deposition of the conductor material upon the exposed seeded areas of the substrate. Then, the substrate surface is subjected to a plasma discharge to facilitate removal of the seed particles. This method, however, has not provided complete removal of the catalyst and seeped circuit material between the circuit features.
Heretofore, the related art does not disclose complete removal of the residual catalyst material and residual seeped circuit material. If the residual catalyst layer and circuit material are not completely removed, they result in yield losses because of the shorts created. Such a decrease in product yield becomes quite costly when processing large amounts of circuitized substrates.
SUMMARY OF THE INVENTION
The present invention is a process for removal of undesirable conductive material (e.g., catalyst material and seeped circuit material) on a circuitized substrate (e.g., printed circuit board (PCB)) and the resultant printed circuit.
It is an object of the present invention to provide a process and resultant circuit which effectively address the electrical shorting problems caused by nonremoval of the residual catalyst material and seeped circuit material.
It is a further object of the present invention to eliminate electrical shorting by completely removing residual catalyst and residual seeped circuit material.
It is a further object of the present invention to eliminate the need to scrap circuits due to shorting caused by the residual catalyst layer and residual seeped circuit material by completely removing the residual catalyst layer and residual seeped circuit material.
It is a further object of the present invention to increase product yield during processing of circuitized substrates thus resulting in a substantial cost benefit (on the order of over 1 million present value dollars industry wide).
It is a further object of the present invention to provide a process which has steps (e.g., pretreating residual material in cyanide, oxidizing, removing residual material in cyanide dip) to preferentially attack the residual catalyst layer and residual seeped circuit material without deleterious effects (e.g., excessive removal of circuit line material) to the surrounding circuit material and catalyst layer.
The process of the present invention for making a circuitized substrate includes the steps of: a) providing a catalyst layer (e.g., palladium and tin) having a circuit pattern (e.g., copper) thereon; b) pretreating the catalyst layer and the circuit pattern (e.g., with a cyanide dip) for removal of undesirable portions of the catalyst layer and the circuit pattern which cause electrical leakage between circuit lines of the circuit pattern; c) oxidizing the catalyst layer and the circuit pattern (e.g., with chlorite, permanganate, hydrogen peroxide, or air at a temperature elevated above ambient conditions); and d) removing the undesirable portions of the catalyst layer and the undesirable portions of the circuit pattern (e.g., with a cyanide dip). The circuitized substrate of the present invention includes a circuit pattern on a catalyst layer, wherein undesirable portions of the catalyst layer and circuit pattern are completely removed between the circuit features (e.g. lines, memory) of the circuit pattern so that electrical shorting between the circuit features does not occur. A circuit pattern is positioned on the catalyst layer, wherein undesirable portions of the catalyst layer and circuit pattern are removed between the circuit features of the circuit pattern so that electrical shorting between the circuit features does not occur.


REFERENCES:
patent: 4144118 (1979-03-01), Stahl
patent: 4358479 (1982-11-01), Canestaro et al.
patent: 4430154 (1984-02-01), Stahl et al.
patent: 4632857 (1986-12-01), Mallory, Jr.
patent: 4718972 (1988-01-01), Babu et al.
patent: 4874635 (1989-10-01), Kara et al.
patent: 5009714 (1991-04-01), Arrington et al.
patent: 5084299 (1992-01-01), Hirsch et al.
patent: 5213841 (1993-05-01), Gulla et al.
patent: 5302492 (1994-04-01), Ott et al.
patent: 5302765 (1994-04-01), Ott et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for removal of undesirable conductive material on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for removal of undesirable conductive material on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for removal of undesirable conductive material on a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3069161

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.