Chemistry of hydrocarbon compounds – Production of hydrocarbon mixture from refuse or vegetation – From synthetic resin or rubber
Reexamination Certificate
2001-05-11
2002-10-15
Dang, Thuan D. (Department: 1764)
Chemistry of hydrocarbon compounds
Production of hydrocarbon mixture from refuse or vegetation
From synthetic resin or rubber
Reexamination Certificate
active
06465702
ABSTRACT:
The invention relates to a feedstock recycling process for thermoset materials.
An issue which is increasingly raised in the industrial use of plastics, alongside low-cost availability, good processing performance, and advantageous physical properties, is the destiny of the plastics after use. When considering desirable material usage cycles, the principle is: reuse is preferable to other recycling methods, which are preferable to disposal.
Since in many sectors of industry the reuse of plastics is severely restricted, the spotlight is being placed on the requirement for methods of recycling. In this connection, since they can be melted by heating, thermoplastics are in principle suitable for product recycling. However, materials which have been filled or reinforced, for example with glass fibers, give problems. In contrast, this procedure is impossible with thermosets, i.e. cured plastics which cannot be melted. But it is just these thermoset materials which are the materials of choice for many products in electrical engineering and electronics, since the materials have excellent mechanical and thermal properties. This is particularly true for fiber-reinforced materials and plastic-based composites.
In Germany some hundreds of thousands of metric tons of glass-fiber-reinforced plastics (GRPs) are processed every year. More than 50% of these GRP materials are thermoset materials. The resin systems used comprise amino resins, epoxy resins, phenolic resins, and unsaturated polyester resins. Epoxy resins have proven particularly successful for high-performance composite materials. Besides glass-fiber-reinforced epoxy resin materials, the materials used here include those reinforced with carbon fibers or with aramid fibers.
Since increased awareness of the environment means that in the future there will be regulations in almost every case requiring the manufacturer to take back used products, the producers of fiber-reinforced thermoset materials are increasingly also having to provide ways of recycling these materials.
Energetic recycling (incineration with regeneration of energy) has only limited advantages for fiber-reinforced or highly filled plastics, since the inert filler content and fiber content is up to 70% and has to be disposed of as waste, mostly as hazardous waste. In addition, incineration of halogen-containing plastics produces hydrogen halides, which require complicated removal by washing, and require neutralization.
Product recycling of thermoset materials is currently possible only in the form of particle recycling. For this, the materials have to be comminuted, ground, treated and fractionated, and, where appropriate, purified. In the case of printed circuit boards, the metallic particles have to be separated off from the fiber/plastic content. Proportions of up to 15% of the recycled plastic can then be mixed as a filler with thermoplastics or thermosets. Since the amount is limited to 15%, however, there is little opportunity to recycle returned parts; in most cases the process is therefore limited to the reincorporation of waste arising in situ during processing. Since the material cannot be recycled to a sufficient extent, there is clearly a need for feedstock recycling to be advanced beyond the initiatives seen hitherto.
Base chemicals in petrochemistry can be produced by degrading polymer structures, thus saving resources. The products obtained can then—directly or after treatment—be utilized as raw materials for plastics production. The available modes of feedstock recycling are as follows:
pyrolysis
gasification
hydrolysis and oxidation using sub- or supercritical water
hydrogenation
Pyrolysis is thermal decomposition of organic compounds without a supply of oxygen, forming gases, condensable products, and solid, carbon-containing residues. It is carried out at temperatures of from 550 to 1100° C. The products obtained are pyrolysis gas, pyrolysis oil and pyrolysis coke, and the product specifications accessible here depend on the pyrolysis temperature range. Various pyrolysis plants using plastics, which have been in operation only for a short time, have shown that the pyrolysis oils which can be used for product recycling are rich in oxygen and thermally unstable, so that the process of treatment to give base materials for petrochemistry is relatively complicated. The yield of pyrolysis products which can be reused directly in the process of plastics production is presently about 33%.
Gasification involves partial oxidation. Here, plastic wastes are reacted with oxygen and, where appropriate, steam, as gasifier, at temperatures of from about 1300 to 1500° C. to give a mixture of carbon monoxide and hydrogen (synthesis gas), carbon dioxide, and also methane, ethylene, and acetylene. A solid residue of about 2% of carbon black with ash is left behind. The heat of reaction liberated means that the gasification process can be carried out autothermally. The synthesis gas, which still has about 75% of the energy content of the starting materials, can be used to prepare methanol and products derived from methanol.
The hydrolysis and oxidation of plastics using sub- or supercritical water takes place in a closed vessel at temperatures up to 500° C. and pressures up to 1000 bar. The supercritical point is at 374° C. At this temperature the pressure reached is 221 bar. Without oxidant it is solely hydrolysis which takes place. Controlled attack of water molecules at the linkage points in polycondensates causes them to cleave, enabling the starting materials to be reclaimed. Oxidants which may be used are air, oxygen, and hydrogen peroxide. These oxidize the organic skeleton of the plastic to give carbon dioxide and water. The nitrogen content in nitrogen compounds is converted into ammonia or nitrogen.
In hydrogenation, plastics wastes give fuels, heating oils, heating gases or petrochemical raw materials via addition reactions with hydrogen at temperatures up to 480° C. and pressures up to 300 bar. The yield achieved here of hydrogenated oils which can be treated in refineries of the usual type is about 80%. However, this yield can only be achieved if the plastics are processed together with oil residues (plastics content from 8 to 10%), and are used in a dechlorinated and dried condition.
The use of 1,2,3,4-tetrahydronapthalene (tetralin) as a hydrogen donor has been proposed as an alternative to pressure-hydrogenation with hydrogen for degrading crosslinked, i.e. fully cured, phenol-formaldehyde resins (see: D. Braun, R. Steffan, Angew. Makromol. Chem. 92 (1980), pages 169 to 189). This procedure corresponds to what is known as the Pott Broche process for extractive coal liquefaction (see: A. Pott, H. Broche, Fuel 13 (1934), pages 91 to 95, 125 to 128 and 154 to 157). This process can give a conversion of more than 90% in the liquefaction of coal with tetralin.
It has been found that when phenol-formaldehyde resins are cleaved by hydrogenolysis, these resins—in particle form (grain size≦2 mm)—at temperatures of 410° C., using tetralin, are degraded within a period of 5 h predominantly to give low-molecular-weight, tetralin-soluble phenolic cleavage products. The pressures reached here are up to 26 bar. After cooling the pressure is only slightly superatmospheric, due to small proportions of gaseous cleavage products. Depending on the reaction time and reaction temperature, considerable amounts of insoluble, carbonized degradation products are obtained.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a process which permits the feedstock recycling of thermoset materials, in particular of epoxy resin materials, under the mildest possible conditions with low energy cost and high yield of recycled base chemicals. A particular object here is to find a method which when used on composite thermoset materials even permits the components in the composite to be reclaimed in the purest possible form.
According to the invention, this is achieved by treating a thermoset material with a partially hydrogenated aromatic hydrocarbon—in the presence of
Braun Dietrich
Rudolf Arnd-Peter
Von Gentzkow Wolfgang
Dang Thuan D.
Morrison & Foerster / LLP
Siemens Aktiengesellschaft
LandOfFree
Process for recycling of thermoset materials does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for recycling of thermoset materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for recycling of thermoset materials will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2949737