Process for recovery of metals from metal-containing ores

Specialized metallurgical processes – compositions for use therei – Processes – Free metal or alloy reductant contains magnesium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S744000

Reexamination Certificate

active

06395062

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to processes for the recovery of metals from metal-containing ores in which the ore is treated with an aqueous acid leach solution.
BACKGROUND OF THE INVENTION
In the recovery of metal values from metal-containing ores using an acid leach solution and an organic solvent extractant containing at least one oxime to extract the metal values from the acid leach solution, the oxime in the organic solvent will often extract not only the desired metal values, but also metal values that are not wanted such as iron.
The iron values must be significantly lowered in the organic solvent solution prior to the use of an acid strip solution to strip the desired metal values from the organic solvent solution. Failure to decrease the iron values in the organic solvent solution will result in contamination of the electrolyte, containing the desired metal values, such as copper. When iron is transferred to the acid strip solution and then to the tankhouse where the metal values are recovered by electrolysis, the electrolyte solution in the tankhouse must be partially removed from time to time to reduce the iron level in the electrolyte solution. This also results in a loss of copper values as well as tankhouse additives and sulfuric acid from the electrolyte solution in the tankhouse.
One method for reducing iron values in the organic solvent solution is the washing, i.e. scrubbing, of the organic solvent solution with a weakly acidic aqueous sulfuric acid solution, which has been found to remove part of the iron values in the organic solvent solution containing the oxime.
SUMMARY OF THE INVENTION
This invention relates to the discovery that the use of a mixture of a C9 alkylsalicylaldoxime with a ketoxime as extractant in an organic solvent solution containing metal values results in a significantly enhanced transfer of iron values therefrom when scrubbed with a weakly acidic aqueous sulfuric acid solution when using short mixer retention times, compared to the use of other aldoxime/ketoxime mixtures such as a mixture of a C12 alkylsalicylaldoxime and a ketoxime.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein are to be understood as modified in all instances by the term “about”.
The process for recovering metal values, such as copper, from ores containing them using an acid leach solution typically comprises at least the following steps, which are given for copper ores but are equally valid for the extraction of other metals.
1. Aqueous acid leaching of the copper ore using a strong acid to form an aqueous acid leach solution containing copper ions and often relatively small quantities of other metal ions. The aqueous leach acid solution dissolves salts of copper and other metals, if present, as it trickles through the ore. The metal values are usually leached with aqueous sulfuric acid, producing a leach solution having a pH of 0.9 to 2.0.
2. The copper-pregnant aqueous acid leach solution is mixed in tanks with an oxime extraction reagent which is dissolved in a water-immiscible organic solvent, e.g., a kerosene or other hydrocarbons. The reagent includes the oxime extractant which forms a metal-extractant complex with the copper ions as well as ions of other metals. The step of forming the complex is called the extraction or loading stage of the solvent extraction process.
3. The outlet of the mixer tanks continuously feeds to a large settling tank, where the organic solvent (organic phase), now containing the copper-extractant complex in solution, is separated from the depleted aqueous acid leach solution (aqueous phase). This part of the process is called phase separation. Usually, the process of extraction is repeated through two or more mixer/settler stages, in order to more completely extract the copper.
4. After extraction, the depleted aqueous acid leach solution (raffinate) is either discharged or recirculated to the ore body for further leaching.
5. The loaded organic phase containing the dissolved copper-extractant complex is fed to another set of mixer tanks, where it is mixed with a dilute acid scrub or wash solution to remove some of the residual metals other than copper from the organic phase. The acid used is dilute sulfuric acid. One or more wash stages may accordingly be employed depending on the trace metals present, the amount of entrainment and the required purity of the final copper loaded stripping solution.
6. The washed loaded organic phase is then fed to another set of mixer tanks, where it is mixed with an aqueous strip solution of concentrated sulfuric acid. The highly acid strip solution breaks apart the copper-extractant complex and permits the purified and concentrated copper to pass to the strip aqueous phase. The process of breaking the copper-extractant complex is called the stripping stage, and the stripping operation is repeated through two or more mixer-settler stages to more completely strip the copper from the organic phase.
7. As in the extraction process described above (step 2 and 3), the mixture is fed to another settler tank for phase separation.
8. From the stripping settler tank, the regenerated stripped organic phase is recycled to the extraction mixers to begin extraction again, and the copper is recovered from the strip aqueous phase, customarily by feeding the strip aqueous phase to an electrowinning tankhouse, where the copper metal values are deposited on plates by a process of electrodeposition.
9. After obtaining the copper values from the aqueous solution, the solution known as spent electrolyte, is returned to the stripping mixers to begin stripping again.
In the above circuit, the oxime extractant often used is a C12 alkylsalicylaldoxime, optionally with a ketoxime, e.g. 5-dodecylsalicylaldoxime alone, or a mixture of the foregoing with 2-hydroxy-5-nonylacetophenone oxime.
It has now been discovered that when the oxime extractant is a C9 alkylsalicylaldoxime or a mixture thereof with a ketoxime, e.g. 5-nonylsalicylaldoxime and 2-hydroxy-5-nonylacetophenone oxime, the following advantages are obtained:
1. Highly effective iron removal is obtained compared to C12 alkylsalicylaldoxime and C12 alkylsalicylaldoxime/ketoxime mixtures, even when short retention (contact) times in the mixer tanks are used in scrub stage 5 above, e.g. retention times of from 1 to 5 minutes, preferably from 1 to 3 minutes, and more preferably from 1 to 2 minutes.
2. The C9 alkylsalicylaldoxime and the C9 alkylsalicylaldoxime/ketoxime mixture loads less iron in step 2, above than does a corresponding C12 alkylsalicylaldoxime and a mixture of a C12 alkylsalicylaldoxime and a ketoxime.
In step 5 above, the dilute aqueous sulfuric acid solution used in this step preferably contains from 7.5 to 40 g/l of sulfuric acid, more preferably from 7.5 to 25 g/l, and most preferably from 10 to 20 g/l. The dilute aqueous sulfuric acid solution is composed of either all fresh aqueous sulfuric acid or a mixture of fresh aqueous sulfuric acid and up to 99% by weight of aqueous sulfuric acid containing electrolyte i.e. spent electrolyte from step 9. above diluted with water as needed to provide the above sulfuric acid content. The volume:volume ratio of organic phase:dilute aqueous sulfuric acid phase used in the mixer in one or more wash stages is preferably from 0.1:1 to 4:1, more preferably from 0.5:1 to 3:1, and most preferably about 0.75:1.5.
The oxime extractant present in the organic phase used in the process of the invention is a C9 alkylsalicylaldoxime, optionally in a mixture with a ketoxime. When a ketoxime is present, the molar ratio of C9 alkysalicylaldoxime to ketoxime is preferably from 0.1:1 to 11:1, preferably from 0.4:1 to 3.5:1, and more preferably from 1:1 to 2.7:1. The oxime extractant is added to the organic solvent in step 2. above in a quantity sufficient to give a molar concentration of from 0.02 to 0.8.
The preferred C9 alkylsalicylaldoxime for use in the practice of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for recovery of metals from metal-containing ores does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for recovery of metals from metal-containing ores, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for recovery of metals from metal-containing ores will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2851205

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.