Process for recovering the carbide metal from metal carbide...

Chemistry of inorganic compounds – Treating mixture to obtain metal containing compound – Group vib metal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S062000, C423S071000

Reexamination Certificate

active

06395241

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a process for recovering the carbide metal from metal carbide scrap. More particularly, the invention relates to an improved process for recovering tungsten from tungsten carbide scrap.
BACKGROUND OF THE INVENTION
Cemented carbide tools are made from mixtures comprising extremely hard and extremely fine metal carbide particles together with a suitable binder or cement. Examples of such tools include those tools made of tungsten carbide cemented with an iron group metal such as iron, nickel, chromium, molybdenum, or cobalt. Cobalt is the most widely used cementing material. Since all of the materials used in the operation of cemented carbides are very valuable, it is desirable to reclaim the materials whenever possible.
Metal carbide scrap material is available in two basic forms. Soft scrap material is referred to in the industry as that material which has not been sintered, and, therefore, soft scrap material may be material which has been manufactured and found to deviate from accepted specifications, or waste material which is produced during the fabrication of articles. Soft scrap may contain from about 10% to about 98% of the desired metal. Hard metal carbide scrap consists of solid sintered pieces which may be rejected or used pieces of tools and other objects which have been disintegrated into pieces for reclaiming the valuable metals. Various proposals have been made for recovering the valuable carbide metal such as tungsten from each type of scrap. Both the soft scrap and the hard scrap metal carbides are generally referred to in the industry as secondary tungsten materials.
Various processes have been suggested for reclaiming the desirable metal from the secondary metal carbide scraps, and chemical processing (and direct recycling methods) of the metal carbide scrap materials are most often utilized to recycle and recover the carbide metal. The chemical conversion processes include many different steps and results in a highly pure final product which is either ammonium metatungstate (AMT) or ammonium paratungstate (APT). The present invention relates to the initial treatment of the metal carbide scrap.
U.S. Pat. No. 3,887,680 (MacInnis et al) describes a process where tungsten carbide containing an iron group metal such as cobalt is oxidized to a friable oxidation product. The oxidation product is then ground and treated by digesting it in an aqueous solution of an alkali metal hydroxide under controlled conditions to recover tungsten values.
U.S. Pat. No. 3,953,194 (Hartline et al) describes a process for reclaiming cemented metal carbide scrap by subjecting the scrap to a four stage process which involves: a catastrophic oxidation of the scrap at temperatures of at least 1100° F. in the presence of oxygen to convert the metal carbide to metal oxide; subdividing the metal oxide to a powder; reducing the metal oxide powder with a reducing gas to reduce the oxygen content of the powder to a maximum of 0.5% by weight; and carburizing the reduced powder by subjecting it to available carbon to convert the metal to metal carbide.
U.S. Pat. No. 4,256,708 (Quatrini) describes a process for recovering tungsten from cemented tungsten carbide wherein the carbide is oxidized to form an oxidized product that is digested in an aqueous solution of an alkali metal hydroxide to form a water soluble alkali metal tungstate portion and an insoluble portion. The patentee indicates that the recovery of tungsten values is improved when the insoluble portion is digested in an aqueous alkali metal hydroxide solution with a suitable amount of titanium dioxide which promotes the formation of a soluble alkali metal tungstate.
U.S. Pat. No. 4,255,397 (Martin et al) describes an improvement in the process for recovering tungsten from tungsten carbide scrap which utilizes a long oxidation period followed by digestion and sodium hydroxide to form a water soluble alkali metal tungstate and a water insoluble portion which is believed to be a complex cobalt tungstate. It is suggested in the '397 patent that the oxidation step can be reduced in time and desirable tungsten can be recovered from the water insoluble portion containing the complex cobalt tungstate by mixing the insoluble portion with an alkali metal carbonate and roasting the mixture in an atmosphere containing oxygen below the fusion temperature of the mixture. The resulting oxidized product is leached with water so that substantially all of the tungsten values initially present are recovered in the process.
SUMMARY OF THE INVENTION
The present invention relates to a process for recovering the carbide metal from metal carbide scrap wherein the metal is tungsten, titanium, vanadium, chromium or molybdenum, and this process comprises (A) providing a mixture comprising the metal carbide scrap and at least a stoichiometric amount, based on the amount of carbide metal present in the scrap, of an alkali metal hydroxide, (B) heating the mixture in the presence of oxygen at an elevated temperature and pressure for a period of time sufficient to form a water soluble alkali metal salt of the carbide metal, and (C) recovering the water soluble alkali metal salt.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention may be considered as an improvement in the basic processes described in U.S. Pat. No. 3,887,680 to MacInnis et al. According to the processes described in the '680 patent, scrap tungsten carbide is oxidized in air at a temperature preferably from about 825° C. to about 850° C. The oxidized cemented tungsten carbide product thus obtained is thereafter ground to a powder form, charged to an aqueous solution of an alkali metal hydroxide, and heated under pressure for several hours. A water soluble alkali metal tungstate and an insoluble iron group metal product are obtained thereby allowing a separation of the tungsten values from the iron group metals. One of the differences between the process of the present invention and the process described in the '680 patent is that, in the present invention, a mixture of the metal carbide scrap (not the oxidized scrap) and an alkali metal hydroxide, optionally in the presence of water, is heated to an elevated temperature and pressure in the presence of oxygen to form the desired water soluble alkali metal derivative of the carbide metal (e.g., sodium tungstate). Using tungsten carbide scrap cemented with cobalt as an example, the reaction may be represented as follows:
WC+Co+2NaOH+30
2
→Na
2
WO
4
+Co(OH)
2
+C
0
2
The sodium tungstate is soluble in water while the cobalt hydroxide is insoluble in water.
The process of the present invention may be utilized for recovering carbide metals from metal carbide scraps such as tungsten carbide scrap, titanium carbide scrap, vanadium carbide scrap, chromium carbide scrap, and molybdenum carbide scrap. In one embodiment, the process is useful for recovering tungsten, titanium, vanadium, chromium and molybdenum from carbide scraps containing such metals wherein the metal carbides are cemented metal carbides. Cobalt is the most widely used cementing material although other cementing materials such as iron, nickel, chromium, and molybdenum have been utilized. In one embodiment, the cementing materials are the iron group metals including iron, nickel and cobalt.
The process of the present invention can be carried out on either soft scrap or hard scrap. Soft scrap includes scrap from metal carbide compositions prior to sintering. Thus, the soft metal carbide scrap includes powders, sweeps, trimmings, and sludges of metal carbide compositions, and in particular, cemented metal carbide compositions recovered as scrap materials in the processing of the compositions into a sintered metal carbide shape such as a tool. Hard scrap includes the hard solid pieces of sintered metal carbide compositions which may include one or more of the cementing materials mentioned previously. The hard scrap pieces may be obtained either because a sintered product is off specification, o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for recovering the carbide metal from metal carbide... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for recovering the carbide metal from metal carbide..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for recovering the carbide metal from metal carbide... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2841910

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.