Electricity: measuring and testing – Particle precession resonance – Using a nuclear resonance spectrometer system
Reexamination Certificate
1999-05-07
2001-05-29
Arana, Louis (Department: 2862)
Electricity: measuring and testing
Particle precession resonance
Using a nuclear resonance spectrometer system
C324S307000
Reexamination Certificate
active
06239598
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for producing magnetic resonance images using actual sample trajectories to produce images without errors caused by sampling errors in the spatial frequency space (the k-space). The invention permits the measuring of magnetic resonance imaging sample trajectories in situ from the imaged subject or patient directly and efficiently. The process measures the k-space trajectory using phase values of acquired magnetic resonance signals.
2. Description of the Prior Art
The process of producing images based on readings from magnetic resonance equipment and a number of k-space calibration approaches have been described in both patents and printed literature (1-5). One prior method calibrates the test gradient waveforms using self-encoding gradients. This prior method measures k-space trajectory by analyzing the temporal locations of echo peaks produced by the combination of self-encoding gradients and a test gradient waveform.
Another prior approach measures the actual k-space trajectories by recording signals from a small phantom at a number of locations inside the imaging field (5-8). The time varying magnetic field at the probe location is recorded via phase differences of the acquired data and k-space trajectories are then obtained by solving a set of linear equations.
Still another prior art technique for measuring the actual sample trajectories involves measuring the driving currents of gradient amplifiers (9, 10). Other techniques currently being researched include an approach which establishes landmarks in the k-space by applying short radio frequency pulses at selected times during the k-space traversal (11). Actual k-space trajectories are then determined from the established landmarks.
There have also been many patents in the field of magnetic resonance imaging utilizing information derived from k-space. U.S. Pat. No. 5,621,321 entitled “Magnetic Resonance Scan Calibration Method for Ultra Fast Image Acquisition” describes a method in which data lines are one-dimensionally transformed into a frequency encoded direction. Other techniques have been used for producing images from magnetic resonance techniques such as the technique using gradient echoes and spin echoes or (Grase). This technique, however, selectively phase encodes and time shifts the echo responses and occurrence so as to smoothly distribute unwanted phase shift from field inhomogeneity and/or chemical phase shift effects over the phase encoded dimension in k-space. U.S. Pat. Nos. 5,680,045 and 5,270,654 utilized this Grase technique.
Each of the prior mentioned approaches has its shortcomings. The self-encoding approach takes a long time, and its accuracy is dependent on the accuracy of realized self-encoding gradient amplitude. Gradient performance non-linearity is not accounted for. The RF landmark method is also time consuming and because of the limits in the temporal resolution of the RF impulses and limits on the RF energy deposition, only a few k-space locations are marked during each acquisition. Large numbers of repetitions are necessary to measure an entire k-space trajectory. The small phantom method requires separate phantom experiments and the gradient current monitoring does not account for eddy currents.
Magnetic resonance images are reconstructed from discrete samples of the imaged object's distribution in the spatial frequency domain (the k-space). Actual sampling trajectory in the k-space often deviates from that specified by the ideal spatial encoding gradient waveforms due to imperfections in gradient amplifier performance, readout timing errors, and eddy currents induced by gradient pulses. The resulting misregistrations in k-space sample locations cause image artifacts and distortions in images reconstructed using ideal k-space sample locations. Echo planar imaging, fast spiral scan MRI, and other fast non-Cartesian scan MRI techniques that are widely used in many important imaging applications such as functional brain imaging, interventional imaging, etc., are especially susceptible to this type of image errors.
Modern magnetic resonance scanners use actively shielded gradients and electronic compensation measures to reduce and compensate for induced eddy currents. Despite these corrections, substantial k-space sample trajectory deviations still exist, especially for fast imaging applications that require fast gradient switching and/or ramping (e.g., echo planar imaging) or, use complicated non-Cartesian sampling patterns (e.g., spiral scanning magnetic resonance imaging). In the former case, gradient amplifiers may be driven into a nonlinear operating range causing gradient waveform distortions and thereby k-space sample trajectory deviations. In the latter case, the use of complicated non-Cartesian scan patterns makes eddy current compensation by common measures, mostly adjusted for proper compensation of trapezoidal waveforms, less effective. In most of these cases, due to higher than normal sampling rates, image errors caused by readout timing errors are amplified.
Effects of k-space sample location misregistration can be corrected by reconstructing images using the actual k-space trajectories by regridding interpolation and Fast Fourier Transforms (FFT) (12). Because of aforementioned shortcomings of prior art methods for the measurement of actual k-space trajectories, such measurements are only made for a limited number of scan orientations and field of views. Imaging in other orientations or with other field of views suffers from significant errors due to k-space trajectory deviations. Thus, there exists a need for a technique that can measure k-space trajectories in situ to allow imaging in arbitrary orientations that best fit the requirements of each particular study.
SUMMARY OF THE INVENTION
The present invention provides a novel technique for the measurement of k-space trajectory. This technique determines the actual k-space trajectory from phase values of acquired magnetic resonance signals collected for a plurality of excited slices. The correct k-space locus at each readout point is calculated from corresponding phase difference between acquired magnetic resonance signals of adjacent slices.
The measurements of k-space trajectories are made from the imaged subject/object directly and occurs in a few seconds or less using a few readout lines. The invention provides an accurate set of data for correcting image errors caused by non-ideal sample trajectories in magnetic resonance imaging (MRI) exams that employ scan techniques sensitive to sample trajectory deviations, illustratively including echo planar imaging and fast spiral scan techniques, thereby increasing the sensitivity and specificity of the MRI exams. The present invention also improves response of spatially and spectrally selective excitations in MRI.
The method of the present invention is suitable for trajectory measurement in magnetic resonance spectroscopy and includes acquiring signal from a plurality of excited regions, each region having a spin density function and a cumulative phase shift associated therewith. Thereafter, an excited region gradient amplitude is determined and a second excited region is scanned at a known separation from a first excited region. A k-space trajectory for the first excited region at a predetermined time relative to the second excited region is determined in addition to a difference in the accumulated phase shift between the regions. A k-space trajectory is then extracted therefrom. The present invention is useful in calculating magnetic resonance images.
REFERENCES:
patent: Re. 35656 (1997-11-01), Feinberg et al.
patent: 5043665 (1991-08-01), Kuhara et al.
patent: 5151656 (1992-09-01), Maier et al.
patent: 5270654 (1993-12-01), Feinberg et al.
patent: 5271399 (1993-12-01), Listerud et al.
patent: 5317262 (1994-05-01), Moonen et al.
patent: 5341099 (1994-08-01), Suzuki
patent: 5361028 (1994-11-01), Kanayama et al.
patent: 5394872 (1995-03-01), Takiguchi et al.
patent: 5432447 (
Arana Louis
Gifford, Krass, Groh Sprinkle, Anderson & Citkowski, P.C.
The UAB Reasearch Foundation
LandOfFree
Process for rapid sample trajectory calibration for magnetic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for rapid sample trajectory calibration for magnetic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for rapid sample trajectory calibration for magnetic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2498227