Gas separation: processes – Liquid contacting – Organic gas – liquid particle – or solid particle sorbed
Reexamination Certificate
2001-08-17
2003-12-16
Smith, Duane S. (Department: 1724)
Gas separation: processes
Liquid contacting
Organic gas, liquid particle, or solid particle sorbed
C560S248000
Reexamination Certificate
active
06663692
ABSTRACT:
The present invention relates to a process for the removal of acetic acid and/or acetate esters and/or aldehydes from gaseous carbon dioxide streams containing one or more of these compounds and, in particular, the removal of such compounds from gaseous carbon dioxide streams produced in the manufacture of vinyl acetate from ethylene, acetic acid and an oxygen-containing gas and produced in the oxidation of ethane and/or ethylene.
BACKGROUND OF THE INVENTION
Generally, in the oxidation of olefins, such as the oxidation of ethane and/or ethylene to acetic acid, a gaseous fraction is produced which comprises the by-product carbon dioxide and also acetic acid. The carbon dioxide may be removed from the gaseous fraction by absorption in an aqueous potassium carbonate solution, desorbed by steam stripping and then vented to atmosphere. Prior to absorption, the acetic acid is generally removed from the carbon dioxide fraction by scrubbing. The gaseous fraction may also contain compounds which may not be removed by the scrubbing process and which may subsequently affect the efficiency of the carbon dioxide absorption step. Such compounds include acetates and aldehydes, for example, ethyl acetate, vinyl acetate and acetaldehyde.
Generally, in the manufacture of vinyl acetate, ethylene, acetic acid and an oxygen-containing gas are combined at elevated temperature in the presence of a catalyst. The gaseous product mixture may be cooled and quenched to produce a liquid fraction comprising vinyl acetate product and a gaseous fraction which may comprise unconverted oxygen, unconverted ethylene, carbon dioxide, small amounts of acetic acid and other compounds such as ethyl acetate and acetaldehyde. Typically, carbon dioxide is removed from the gaseous fraction by absorption in aqueous solutions of potassium carbonate. Generally, prior to carbon dioxide removal, acetic acid is removed from the gaseous fraction by scrubbing with an aqueous scrubbate. Such scrubbing and carbon dioxide removal processes are described in, for example, Hydrocarbon Processing, November 1972, pages 141-143 and EP-A-0 927 712.
U.S. Pat. No. 3,855,280 describes a process for the manufacture of vinyl acetate by reacting oxygen, ethylene and acetic acid in the presence of a Group VIII noble metal catalyst. The gaseous reaction product is separated into a liquid portion comprising the vinyl acetate product and a gas stream. The gas from the separator is scrubbed with water to recover additional vinyl acetate. The scrubbed gas stream is then scrubbed with a carbon dioxide-absorbing liquid to remove carbon dioxide.
U.S. Pat. No. 4,818,437 describes a process for isolating vinyl acetate from a gas mixture containing vinyl acetate, ethyl acetate, water and carbon dioxide formed in the reaction of ethylene with acetic acid and oxygen in the gas phase over catalysts containing palladium or palladium compounds. The gas mixture leaving the reaction zone is passed to a distillation column and the gas mixture leaving the top thereof is cooled. The gas which is not condensed during the cooling is washed with acetic acid in a washing column, to obtain an acetic acid solution containing vinyl acetate. A series of further distillations recovers pure vinyl acetate.
SUMMARY OF THE INVENTION
It has been observed that the efficiency of the carbon dioxide removal with aqueous potassium carbonate solution is reduced by the presence of potassium acetate in the system. Without wishing to be bound by any theory, it is thought that the formation of potassium acetate is due to the presence of acetate esters and/or aldehyde compounds in the gaseous fraction which, due to their limited solubility in water, are carried-over from the water scrubber and enter the carbon dioxide removal system. The presence of potassium acetate in the carbon dioxide removal system also leads to a need for a more frequent replacement of the potassium carbonate solution and hence also therefore to increased disruption of the process caused by more frequent emptying and refilling of the system with potassium carbonate solution.
It has now been found that the technical problems described above may be overcome or at least mitigated by scrubbing the carbon dioxide-containing gaseous fraction with an aqueous scrubbate comprising acetic acid in the scrubber prior to removing the carbon dioxide from the gaseous fraction.
Accordingly, the present invention provides a process for removing at least one compound selected from acetic acid, acetate esters and aldehydes from a gaseous fraction comprising carbon dioxide and said at least one compound, said process comprising the steps of (a) scrubbing in a scrubber at least part of the gaseous fraction to remove said at least one compound and (b) removing carbon dioxide from the scrubbed product of step (a) by absorption in aqueous potassium carbonate and in which process the gaseous fraction is scrubbed in said scrubber with water and acetic acid.
Treating the gaseous fraction with water and acetic acid reduces, when present, the quantity of acetate ester and/or aldehyde compounds fed to subsequent treatment stages such as the removal of carbon dioxide. However, total elimination of acetate esters and/or aldehyde compounds may not be achievable.
Beneficially, the reduction in acetate ester and/or aldehyde compounds achieved by the process of the present invention generally leads to increased efficiency in the subsequent removal of carbon dioxide by absorption in aqueous solutions of potassium carbonate. Typically, the amount of potassium carbonate used is reduced and more stable rates of production of vinyl acetate may be achieved due to less frequent replenishment of the potassium carbonate.
The process of the present invention may be used to remove one or more of acetic acid, acetate esters and/or aldehydes from gaseous streams comprising carbon dioxide produced, for example, in (i) the manufacture of vinyl acetate by the reaction of ethylene, acetic acid and an oxygen-containing gas in the presence of a catalyst or (ii) in the catalytic oxidation of (a) ethane and/or (b) ethylene to produce respectively (a) acetic acid and/or ethylene and (b) acetic acid.
A preferred embodiment of the present invention provides a process for the manufacture of vinyl acetate wherein ethylene, acetic acid and an oxygen-containing gas are combined in a reactor at elevated temperature in the presence of a catalyst which process comprises the steps of (a) withdrawing a gaseous stream from the reactor (b) cooling said gaseous stream to form (i) a liquid fraction comprising vinyl acetate and (ii) a gaseous fraction comprising carbon dioxide and at least compound selected from acetic acid, acetate esters and aldehydes (c) scrubbing in a scrubber at least part of said gaseous fraction to remove said at least one compound and (d) removing carbon dioxide from the scrubbed product of step (c) by absorption in aqueous potassium carbonate and in which process the gaseous fraction is scrubbed in said scrubber with water and acetic acid.
Vinyl acetate may be produced by combining ethylene, acetic acid and an oxygen-containing gas at elevated temperature in the presence of a catalyst using a process such as described in EP-A-0 569 924, EP-A-0 839 793, EP-A-0 672 453 and EP-A-0 685 449 the contents of which are herein incorporated by reference.
The catalyst suitably comprises a Group VIII metal and a promoter. Preferably, the catalyst further comprises a co-promoter. These compounds are suitably accommodated on a support.
With regards to the Group VIII metal, the preferred metal is palladium. The metal may be present in a concentration of greater than 0.2% by weight, preferably greater than 0.5% by weight, especially about 1% by weight based upon total weight of catalyst. The metal concentration may be as high as 10% by weight.
In addition to the Group VIII metal, the catalyst comprises a promoter. The promoter metal may be present in an amount of from 0.1 to 10% by weight in the finished catalyst.
The catalyst composition may comprise a co-promoter material. Sui
de Poitiers Keith
Hennigan Sean Anthony
BP Chemicals Limited
Nixon & Vanderhye
Smith Duane S.
LandOfFree
Process for purifying carbon dioxide-containing gas streams does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for purifying carbon dioxide-containing gas streams, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for purifying carbon dioxide-containing gas streams will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3131626