Process for producing quinazoline derivatives

Organic compounds -- part of the class 532-570 series – Organic compounds – Nitrogen attached directly or indirectly to the purine ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06344559

ABSTRACT:

TECHNICAL FIELD
This invention relates to a novel process for producing the under-mentioned quinazoline derivative (I) of value as a starting compound for the quinazoline derivative described in Japanese Kokai Tokkyo Koho S62-96476, and finds application in pharmaceutical industry.
BACKGROUND ART
This invention provides a novel and industrially improved process for producing said quinazoline derivative (I).
DISCLOSURE OF INVENTION
This invention relates to a process for producing a quinazoline derivative of the following general formula or a salt thereof:
[wherein R
1
is hydrogen or halogen; R
2
is carboxy or protected carboxy; A is lower alkylene]
The present process for producing quinazoline derivative (I) or its salt is as schematically illustrated below.
Process
[wherein R
1
, R
2
and A are as defined above]
The inventors of this invention explored in earnest for a novel production technology for quinazoline derivative (I) and found that by reacting compound (II) with a silylating agent and then with compound (III), optionally followed by desilylation, quinazoline derivative (I) can be produced at low cost, expediently, safely, and in good yield. This invention has been developed on the basis of the above finding.
The salt of quinazoline derivative (I) according to this invention includes salts with bases, for example salts with inorganic bases, e.g. salts with alkali metals such as lithium, sodium, potassium, etc., salts with alkaline earth metals such as calcium, magnesium, etc. and ammonium salts, salts with organic bases, e.g. salts with organic amines such as triethylamine, pyridine, picoline, ethanolamine, triethanolamine, dicyclohexylamine, N,N′-dibenzylethylenediamine, etc., and acid addition salts e.g. inorganic acid addition salts such as hydrochloride, hydrobromide, sulfate, phosphate, etc. and organic acid addition salts such as formate, acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate and toluenesulfonate, among others.
The various definitions given in the foregoing and following disclosures which fall within the scope of this invention are now explained and the relevant subgeneric and specific examples and comments are also given below.
The term “lower” as used throughout this specification means 1~6 carbon atoms unless otherwise specified.
Suitable examples of “halogen” includes fluorine, chlorine, bromine and iodine, for instance.
Suitable examples of “substituted silyl” includes mono(or di or tri)-substituted silyl.
The suitable substituent or substituents on “mono (or di or tri)-substituted silyl” include but are not limited to lower alkyl, lower alkenyl, aryl, and ar(lower)alkyl optionally having one or more suitable substituents.
Suitable examples of said “lower alkyl” and suitable examples of the “lower alkyl moiety” of said “ar (lower) alkyl optionally having one or more suitable substituents” include straight-chain or branched-chain alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl isobutyl, tert-butyl, pentyl, hexyl, etc.
Suitable examples of said “lower alkenyl” include straight-chain or branched-chain alkenyl groups of 2~6 carbon atoms, such as vinyl, allyl, isopropenyl, 1-, 2- or 3-butenyl, 1-, 2-, 3- or 4-pentenyl, and 1-, 2-, 3-, 4- or 5-hexenyl, among others.
Suitable examples of said “aryl” and suitable examples of the “aryl moiety” of said “ar(lower)alkyl optionally having 1 or more suitable substituents” include phenyl and naphthyl, among others.
The “suitable substituents” mentioned for “ar(lower)alkyl optionally having 1 or more suitable substituents” include but are not limited to mono(or di or tri)-halo(lower)alkyl groups (e.g. chloromethyl, bromomethyl, chloropropyl, 1,2-dichloroethyl, 1,2-dibromoethyl, 2,2-dichloroethyl, trifluoromethyl, 1,2,2-trichloroethyl, etc.), lower alkoxy groups (e.g. methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, pentyloxy, isopentyloxy, hexyloxy, etc.), halogen atoms (e.g. fluorine, chlorine, bromine and iodine), and lower alkyl groups (e.g. methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, etc.).
Suitable examples of “protected carboxy” include but are not limited to esterified carboxy, such as lower alkoxycarbonyl (e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, t-butoxycarbonyl, etc. ) and mono(or di or tri)-phenyl(lower)alkoxycarbonyl optionally having nitro (e.g. benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, phenethyloxycarbonyl, benzhydryloxycarbonyl, trityloxycarbonyl, etc.). The more preferred, among them, are C
1
-C
4
alkoxycarbonyl groups and the most preferred species is ethoxycarbonyl.
Suitable examples of said “lower alkylene” include both straight-chain and branched chain groups such as, for example, methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, methylmethylene, ethylethylene and propylene. The more preferred, among them, are C
1
-C
4
alkylene groups and the most preferred species is methylene.
The process for producing quinazoline derivative (I) according to this invention is now described in detail.
Process
Quinazoline derivative (I) or its salt can be produced by reacting compound (II) or a salt thereof with a silylating agent and further with compound (III) or a salt thereof, optionally followed by desilylation. As suitable salts of compound (II), salts with the same acids as mentioned for compound (I) can be mentioned. Suitable salts of compound (III) further include salts with the same bases as mentioned for compound (I).
The silylating agent which can be used with advantage in this invention includes but is not limited to hexamethyldisilazane, trimethylchlorosilane, N,O-bis(trimethylsilyl)acetamide, hexamethyldisiloxane, N-trimethylsilylacetamide, N-methyl-N-trimethylsilylacetamide, N-trimethylsilyldimethylamine, N-trimethylsilyldiethylamine, N-trimethylsilyl-t-butylamine and N-trimethylsilylimidazole.
The reaction with the silylating agent is generally carried out in a routine solvent which does not interfere with reaction, for example toluene, tetrahydrofuran, dioxane, dichloromethane or the like. The reaction temperature is not particularly restricted but this reaction is generally conducted under cooling through heating.
The reaction with compound (III) or a salt thereof is preferably carried out in the presence of a catalyst.
The catalyst suited for this reaction includes bromides [e.g. compounds of the formula Br—Y—R
3
[wherein R
3
represents carboxy or protected carboxy (preferably esterified carboxy, more preferably lower alkoxycarbonyl, most preferably ethoxycarbonyl) and Y represents lower alkylene (preferably C
1
-C
4
alkylene, most preferably methylene)],inclusive of salts thereof, compounds of the formula Br—R
4
[wherein R
4
represents substituted or unsubstituted silyl (preferably tri-substituted silyl, more preferably tri(lower)-alkylsilyl, most preferably trimethylsilyl)], inclusive of salts thereof, and compounds of the formula MX
1
[wherein M represents an alkali metal (preferably sodium or lithium) and X
1
represents bromo or iodo (preferably bromo)], among others]. The preferred catalyst is a compound of the formula Br—Y—R
3
or a salt thereof.
The amount of the catalyst based on each mole of compound (II) or its salt is preferably about 0.1~0.5 mole, more preferably about 0.1~0.4 mole.
This reaction is carried out in the presence of a routine solvent which does not interfere with the reaction or optionally in the absence of a solvent. Preferably, however, the reaction is conducted in a solvent having a large dielectric constant (preferably, dielectric constant ∈≧5) (such as propylene carbonate, nitrobenzene, dichlorobenzene, etc.), and the most preferred solvent is propylene carbonate.
The reaction temperature is not particularly restricted but this reaction is carried out under warming or heating, preferably at a temperature not below about 80° C., more preferably about 90~160° C., and most preferably about 100~150° C.
When th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing quinazoline derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing quinazoline derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing quinazoline derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2947731

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.