Process for producing polyolefins

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S142000, C526S144000, C526S204000, C526S348000, C526S348200, C526S348300, C526S348400, C526S348500, C526S901000

Reexamination Certificate

active

06417296

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a polymerization process for the production of polyolefins utilizing a Ziegler-Natta catalyst and tetrahydrofuran (THF) in amounts sufficient to reduce the electrostatic charge in the polymerization reactor. The use of THF as a catalytic agent further provides polyolefins that are suitable for molding and film applications.
BACKGROUND OF INVENTION
Polyolefins such as polyethylene are well known and are useful in many applications. In particular, linear polyethylene polymers possess properties which distinguish them from other polyethylene polymers, such as branched ethylene homopolymers commonly referred to as LDPE (low density polyethylene). Certain of these properties are described by Anderson et al, U.S. Pat. No. 4,076,698.
A particularly useful polymerization medium for producing polyethylene and polypropylene polymers is a gas phase process. Examples of such are given in U.S. Pat. Nos. 3,709,853; 4,003,712; 4,011,382; 4,302,566; 4,543,399; 4,882,400; 5,352,749 and 5,541,270 and Canadian Patent No. 991,798 and Belgian Patent No. 839,380.
Ziegler-Natta catalysts for the polymerization of olefins are well known in the art and have been known at least since the issuance of U.S. Pat. No. 3,113,115. Thereafter, many patents have been issued relating to new or improved Ziegler-Natta catalysts. Exemplary of such patents are U.S. Pat. Nos. 3,594,330; 3,676,415; 3,644,318; 3,917,575; 4,105,847; 4,148,754; 4,256,866; 4,298,713; 4,311,752; 4,363,904; 4,481,301 and Reissue 33,683.
These patents disclose Ziegler-Natta catalysts that are well known as typically consisting of a transition metal component and a co-catalyst that is typically an organoaluminum compound. Optionally used with the catalyst are activators such as halogenated hydrocarbons and activity modifiers such as electron donors.
The use of halogenated hydrocarbons with Ziegler-Natta polymerization catalysts in the production of polyethylene is disclosed in U.S. Pat. No. 3,354,139 and European Patent Nos. EP 0 529 977 B1 and EP 0703 246 A1. As disclosed, the halogenated hydrocarbons may reduce the rate of ethane formation, improve catalyst efficiency, or provide other effects. Typical of such halogenated hydrocarbons are monohalogen and polyhalogen substituted saturated or unsaturated aliphatic, alicyclic, or aromatic hydrocarbons having 1 to 12 carbon atoms. Exemplary aliphatic compounds include methyl chloride, methyl bromide, methyl iodide, methylene chloride, methylene bromide, methylene iodide, chloroform, bromoform, iodoform, carbon tetrachloride, carbon tetrabromide, carbon tetraiodide, ethyl chloride, ethyl bromide, 1,2-dichloroethane, 1,2-dibromoethane, methylchloroform, perchloroethylene and the like. Exemplary alicyclic compounds include chlorocyclopropane, tetrachlorocyclopentane and the like. Exemplary aromatic compounds include chlorobenzene, hexabromobenzene, benzotrichloride and the like. These compounds may be used individually or as mixtures thereof.
It is also well known, in the polymerization of olefins, particularly where Ziegler-Natta catalysts are employed, to utilize, optionally, electron donors. Such electron donors often aid in increasing the efficiency of the catalyst and/or in controlling the stereospecificity of the polymer when an olefin, other than ethylene, is polymerized. Electron donors, typically known as Lewis Bases, when employed during the catalyst preparation step are referred to as internal electron donors. Electron donors when utilized other than during the catalyst preparation step are referred to as external electron donors. For example, the external electron donor may be added to the preformed catalyst, to the prepolymer, and/or to the polymerization medium.
The use of electron donors in the field of propylene polymerization is well known and is primarily used to reduce the atactic form of the polymer and increase the production of the isotactic polymers. The use of electron donors generally improves the productivity of the catalyst in the production of isotactic polypropylene. This is shown generally in U.S. Pat. No. 4,981,930.
In the field of ethylene polymerization, where ethylene constitutes at least about 50% by weight of the total monomers present in the polymer, electron donors are utilized to control the molecular weight distribution (MWD) of the polymer and the activity of the catalyst in the polymerization medium. Exemplary patents describing the use of internal electron donors in producing polyethylene are U.S. Pat. Nos. 3,917,575; 4,187,385, 4,256,866; 4,293,673; 4,296,223; Reissue 33,683; 4,302,565; 4,302,566; and 5,470,812. The use of an external monoether electron donor, such as tetrahydrofuran (THF), to control molecular weight distribution is shown in U.S. Pat. No. 5,055,535; and the use of external electron donors to control the reactivity of catalyst particles is described in U.S. Pat. No. 5,410,002.
Illustrative examples of electron donors include carboxylic acids, carboxylic acid esters, alcohols, ethers, ketones, amines, amides, nitrites, aldehydes, thioethers, thioesters, carbonic esters, organosilicon compounds containing oxygen atoms, and phosphorus, arsenic or antimony compounds connected to an organic group through a carbon or oxygen atom.
A generally encountered problem in polymerization processes, in particular gas phase polymerization processes, is the formation of agglomerates. Agglomerates can form in various places such as the polymerization reactor and the lines for recycling the gaseous stream. As a consequence of agglomerate formation it may be necessary to shut down the reactor.
When agglomerates form within the polymerization reactor there can be many adverse effects. For example, the agglomerates can disrupt the removal of polymer from the polymerization reactor by plugging the polymer discharge system. Further, if the agglomerates fall and cover part of the fluidization grid a loss of fluidization efficiency may occur. This can result in the formation of larger agglomerates which can lead to the loss of the entire fluidized bed. In either case there may be the necessity for the shutdown of the reactor.
It has been found that agglomerates may be formed as a result of the presence of very fine polymer particles in the polymerization medium. These fine polymer particles may be present as a result of introducing fine catalyst particles or breakage of the catalyst within the polymerization medium.
These fine particles are believed to deposit onto and electrostatically adhere to the inner walls of the polymerization reactor and the associated equipment for recycling the gaseous stream such as, for example, the heat exchanger. If the fine particles remain active, and the polymerization reaction continues, then the particles will grow in size resulting in the formation of agglomerates. These agglomerates when formed within the polymerization reactor tend to be in the form of sheets.
Several solutions have been proposed to resolve the problem of formation of agglomerates in gas phase polymerization processes. These solutions include the deactivation of the fine polymer particles, control of the catalyst activity and the reduction of the electrostatic charge. Exemplary of the solutions are as follows.
European Patent Application 0 359 444 A1 describes the introduction into the polymerization reactor of small amounts of an activity retarder in order to keep substantially constant either the polymerization rate or the content of transition metal in the polymer produced. The process is said to produce a polymer without forming agglomerates.
U.S. Pat. No. 4,739,015 describes the use of gaseous oxygen containing compounds or liquid or solid active-hydrogen containing compounds to prevent the adhesion of the polymer to itself or to the inner wall of the polymerization apparatus.
In U.S. Pat. No. 4,803,251 there is described a process for reducing sheeting utilizing a group of chemical additives which generate both positive and negative charges in the reactor, and which are fed to the reactor in an am

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing polyolefins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing polyolefins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing polyolefins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2910894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.