Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From organic oxygen-containing reactant
Reexamination Certificate
2000-09-13
2002-07-09
Truong, Duc (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From organic oxygen-containing reactant
C528S402000, C528S403000, C528S410000, C528S411000, C528S421000
Reexamination Certificate
active
06417323
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a process for producing a polyether which has its high degree of polymerization and which is useful in the field of cosmetics and in the field of chemical products and to a novel polyether.
Up to now, in the ring-opening polymerization of a substituted epoxide, a molecular weight of the resultant product has been much decreased in general owing to chain transfer originated from extraction of an atom from the substituent. With respect to propylene oxide and an epihalohydrin, the decrease in the polymerizability is not notably decreased by way of exception. The molecular weight may reach millions by selecting a catalyst. However, with the other substituted epoxide, a polyether having its high degree of polymerization could not be obtained in good yield. This is notably observed in particular in the case of an epoxide having a bulky substituent, such as an epoxide having a long chain alkyl group or a silicone chain as a substituent and an epoxide having a highly electron-attractive fluoroalkyl chain as a substituent. That is, these could not be polymerized in good yield even by using a coordinated anionic catalyst, which is deemed in general to have a high activity as a catalyst for polymerization of epoxide, such as a catalyst comprising organoaluminum-water-acetyl acetone and a catalyst comprising organozinc-water. Further, since an epoxide having a highly reactive hydroxyl group such as glycidol deactivates a coordinated anionic catalyst, it could not be polymerized in high degree without protecting the hydroxyl group.
In recent years, examples of using a composition containing a rare earth metal compound as a catalyst for polymerization of ethylene oxide, propylene oxide or epichlorohydrin are seen in, for example, {circle around (1)} Inorg. Chim. Acta, vol. 155, 263 (1989), {circle around (2)} Polymer J., vol. 22, 326 (1990) and {circle around (3)} Macromol. Chem. Phys., vol. 196, 2417 (1995). All of these tried to polymerize ethylene oxide, propylene oxide or epichlorohydrin. It is described that polyethyleneoxide having its number average molecular weight of 2,850,000 is obtained in {circle around (1)}, polyepichlorohydrin having its viscosity average molecular weight (deemed to obtain a value being close to a weight average molecular weight) of 790,000 to 1,650,000 in {circle around (2)} and polypropylene oxide having its number average molecular weight of 70,000 to 980,000 (weight average molecular weight of 120,000 to 3,770,000) in {circle around (3)}. However, the degree of polymerization thereof is approximately the same as that of a conventional coordinated anionic catalyst. In consideration of the fact that when a substituted epoxide other than propylene oxide and epihalohydrin (hereinafter referred to as the substituted epoxide) was polymerized using these conventional catalysts, a polyether having its high degree of polymerization could not be obtained. The rare earth metal compound showing approximately the same performance as the conventional catalyst were not expected to be a useful catalyst in order to obtain a polyether having its high degree of polymerization from the substituted epoxide.
DISCLOSURE OF INVENTION
The present invention is aimed to provide a process for efficiently obtaining a polyether having its high degree of polymerization which comprises easily polymerizing a substituted epoxide, other than propylene oxide and epihalohydrin, being hardly or not able to be polymerized in high degree, up to now.
The present invention provides a process for producing a polyether which comprises ring-opening-polymerizing a substituted epoxide, except for propylene oxide and epihalohydrin, in the presence of a rare earth metal compound represented by the formula (I) and a reducing compound and provides a novel polyether obtained thereby:
wherein
M represents a rare earth element selected from Sc, Y and lanthanide, and
L
1
, L
2
and L
3
are same as or different from each other and each of them represents an oxygen-binding ligand.
MODE FOR CARRYING OUT THE INVENTION
(1) Substituted Epoxide
The substituted epoxide of the present invention means ethylene oxide having a substituent, and examples thereof are as follows.
(1-1) Compounds represented by the formula (II):
wherein
R
1
represents a hydrocarbon group which may have a substituent and which has 1 to 50 carbon atoms, represents an acyl group having 1 to 30 carbon atoms, represents an alkyl sulfonyl group having 1 to 30 carbon atoms or an aryl sulfonyl group having 6 to 30 carbon atoms or represents a group represented by —(AO)
n
—R
2
.
Here, R represents a hydrocarbon group, a fluoroalkyl group or a fluoroalkenyl group, which may have a substituent and which has 1 to 30 carbon atoms, or a fluoroaryl group, which may have a substituent and which has 6 to 30 carbon atoms, or represents a siloxysilyl group having 1 to 500 silicon atoms. A represents an alkylene group having 2 or 3 carbon atoms. n represents a number selected from 1 to 1,000.
Here, preferable examples of the hydrocarbon groups which may have a substituent with respect of R
1
include an alkyl group or alkenyl group having 1 to 42 carbon atoms and an aryl group having 6 to 42 carbon atoms. Examples of the substituent of the hydrocarbon group include a hydroxy group, an alkoxy group (having 1 to 30 carbon atoms), an amino group (a dimethyl amino group, a diethyl amino group or the like), an amide group, a trialkyl ammonium group, a dialkyl ammonium group, an alkyl ammonium group, an ammonium group, an ester group, a carboxyl group, an acyl group (having 1 to 30 carbon atoms), a silyl group, a siloxy group, a nitro group, an aryl sulfonyl group, a cyano group, a phosphonyl group (hereinafter referred to as “the substituent of the present invention”). An alkyl group in this case has 1 to 30 carbon atoms.
A preferable example of the acyl group may be an acyl group having 4 to 22 carbon atoms in total. In this acyl group, a hydrocarbon group may be an alkenyl group. Further, R
1
may be a sulfonyl group having 1 to 30 carbon atoms. A specific example thereof may be a benzenesulfonyl group, a toluenesulfonyl group or a nitrobenzenesulfonyl group.
(1-2) Compounds represented by the formula (III).
Wherein
R
3
represents a fluoroalkyl group or fluoroal kenyl group, which may have a substituent and which has 1 to 30 carbon atoms, or a fluoroaryl group which may have a substituent and which has 6 to 30 carbon atoms, and
a represents a number selected from 0 to 20.
a is preferably a number selected from 0 to 4. The R
3
group is preferably exemplified as trifluoromethyl, pentafluoroethyl, nonafluorobutyl, perfluorohexyl, perfluorooctyl, perfluorododecyl, perfluoro-3-methylbutyl, perfluoro-5-methylhexyl, perfluoro-7-methyloctyl, perfluoro-9-methyldecyl, 1,1-difluoromethyl, 1,1,2,2-tetrafluoroethyl, 4H-octafluorobutyl, 5H-decafluoropentyl, 6H-dodecafluorohexyl, 8H-hexadecafluorooctyl, 10H-icosafluorodecyl, trifluoroethenyl or perfluorophenyl. A preferable example of the substituent of R
3
may preferably be “the substituent of the present invention” mentioned above.
In the substituted epoxide (III), a compound having a=0 and the R
3
group is a perfluoro group having 1 to 30 carbon atoms is more preferable.
(1-3) Compounds represented by the formula (IV).
Wherein
all of plural R
4
s are same as or different from each other, and each of plural R
4
s represents a hydrocarbon group which may have a substituent and which has 1 to 30 carbon atoms or represents a siloxy group having 1 to 200 silicon atoms,
G represents an alkylene group, which may have a substituent and which has 1 to 20 carbon atoms, or an arylene group
b represents a number selected from 1 to 500 as an average value of plural numbers or represents an integer of 1 to 20 as a single number, and
p represents a number selected from 0 and 1.
Here, when the R
4
group is a hydrocarbon group which may have a substituent and which has 1 to 30 carbon atoms, examples of the substituent include an ester group, an amide group, an amino group, a hy
Kawamukai Hiroshi
Miyanaga Seiichi
Oda Takashi
Kao Corporation
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Truong Duc
LandOfFree
Process for producing polyether does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for producing polyether, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing polyether will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2907169