Process for producing marl slags

Plastic and nonmetallic article shaping or treating: processes – Formation of solid particulate material directly from molten...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S013000, C264S332000

Reexamination Certificate

active

06666996

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for producing marl slags and marl slag cements or mixed components for mixed cements from marl having a basicity CaO/SiO
2
of <2.0.
2. Prior Art
When producing cement, calcareous and argillaceous stones, in particular limestone and lime marl, are used as starting materials and burned to cement clinker. The lime contained in the starting materials is completely bound to silicic alumina and optionally iron, thus forming the cement minerals usual to portland cement clinker, such as alite, belite, brown millerite and glass. In order to ensure the desired sintering to cement clinker at comparatively low temperatures of about 1350° C., relatively high-quality starting materials and, in particular, highly calcareous lime marl are required. Lime marl, which usually has a basicity of between 3 and 4 and besides lime also contains SiO
2
, Al
2
O
3
and iron oxides, however, occurs in nature not only in the form of relatively high-quality and largerly pure lime marl, but rather as a common or low-quality marl in substantially higher amounts. The marl that is substantially more wide-spread is characterized by basicities of between 0.8 and 2 and frequently is found also in the form of argillaceous marl. Those comparatively low-grade, yet substantially more wide-spread starting products in conventional cement production processes cannot be used without expensive purification and lime enrichment procedures and are available in large amounts as cheap raw materials.
Slag cements and, in particular, blast furnace slag cements likewise exhibit hydraulic properties and it has already been demonstrated that, by optimizing the slag chemistry and, in particular, by adjusting basicities and aluminate contents as well as applying special activation procedures, metallurgical slags will be improved to the extent that they correspond to a strength development in concrete and are at least equivalent to clinker cement.
SUMMARY OF THE INVENTION
The present invention aims to render wide-spread and cheap raw material marls having low basicities apt for economic utilization in the production of slag cements or mixed components for mixed cements while, at the same time, allowing for the adaptation of the desired product qualities to the respective requirements to a high degree. To solve this object, the process according to the invention essentially consists in that in a first process step argillaceous marl or a mixture of marl and clay having a basicity of <2.0 is dried, preheated and calcined and that, after this, the obtained product in a second process step is melted in a separate melting furnace at higher temperatures than applied in the first process step and is granulated from the melt. Calcination is an endothermic reaction, whereas melting constitutes an exothermic reaction. Due to the fact that argillaceous marl, i.e. relatively low-grade marl, having an elevated Al
2
O
3
content or a mixture of low-quality marl and clay having a basicity of below 2 is dried, preheated and calcined in a first process step, it is initially safeguarded that the high amounts of CO
2
released during calcining need snot be heated to the temperatures usually required in cement production for sintering. The calcination of hydrate, sulfur and carbonate compounds is, thus, carried out at comparatively low temperatures such that the large gas amounts released occur at accordingly low temperature levels, thus enhancing the thermal efficiency and hence the economy of the process. On account of the relatively low purities of the starting substances used, calcination takes place already at lower temperatures than would be the case with highly pure calcium carbonates. Due to the fact that the obtained product in a second process step is subsequently melted in a separate melting furnace at higher temperatures than in the first process step, there is the possibility to subsequently correct the composition of the melt by any means whatsoever and it is feasible, by appropriately granulating the melt, to provide the desired glass portion and ensure that any undesired crystallization will be largely avoided during cooling. Drying, preheating and calcining in a first process step at accordingly low temperatures, moreover, allows for the use of substantially more coarse-grained charging substances as compared to known cement clinker sintering processes such that raw material preparation and, in particular, grinding will not be required, as a rule, but the coarse charging stock merely will have to be finely broken. The process according to the invention also calls for a substantially lower heat consumption than the clinker process.
Advantageously, the process according to the invention is carried out in a manner that the first process step is realized in a suspension type heat exchanger, a rotary tubular kiln, a multiple-hearth furnace or a shaft furnace, or in a fluidized bed or cyclone preheating unit. In a particularly advantageous manner, a suspension type heat exchanger may be employed, whereby it is feasible, in particular if a rotary tubular kiln or shaft furnace is employed in the first step, to choose an even coarser particle size of the charging stock, drying, preheating and calcining of a charging material having particle sizes of, for instance, up to 40 mm being readily feasible.
In a particularly advantageous manner, the second process step is carried out in a melting cyclone, a rotary tubular kiln or a hearth-type furnace, or in an iron melting oxidation reactor, whereby even the formation of foamed slag may be advantageous if a meltdown oxidation reactor is employed.
What is essential in obtaining the desired cement technological properties, after all, is the adjustment of the slag basicity of the target slag, it being advantageously proceeded in a manner that the target slag is adjusted to a basicity CaO/SiO
2
of between 0.9 and 1.85 by mixing marl and clay. If, at the same time, an Al
2
O
3
content of between 6 and 20 wt.-% is aimed at, a high-quality synthetic blast furnace slag will be obtained, such Al
2
O
3
contents being obtainable in a particularly simple manner by using argillaceous marls. When using other marl qualities for the main component, the desired slag chemistry may be adjusted by the aid of bauxite, clays, flue ashes or other industrial waste substances such as, for instance, red muds, sweepings, corundum-containing grinding dusts or refractory break-offs.
What is also essential for obtaining the desired cement technological properties is, of course, accordingly rapid cooling so as to prevent the formation of crystals. Depending on the basicity of the slag, the slag is characterized by different viscosities, wherein the slag becomes highly viscous, in particular, at basicities of above 1.4, and the formation of crystals can no longer be reliably prevented in conventional granulation processes such as, for instance, during granulation in hot-water. In the context of the invention it is, therefore, advantageously proceeded in a manner that the melt at basicities of >1.4 is sprayed into a granulator and, in particular, a vapor granulator. Spray granulation, in which the cooling of the molten droplets in most cases is effected by nozzling in water or water vapor, may be substantially improved even further in that hydrocarbon is additionally nozzled into the spray granulator. The thermal decomposition of hydrocarbon withdraws heat from the sprayed droplets at a cooling gradient of 10
4
to 10
5
K/s while simultaneously forming high-quality synthesis gas, which, as in correspondence with a preferred further development of the process according to the invention, can be burned in the first process step, because the actual heat demand for calcination arises there.
Since, due to the relatively low purity of the starting materials, calcination takes place at relatively low temperatures, the process according to the invention advantageously is carried out in a manner that the first process step is carried out at tem

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing marl slags does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing marl slags, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing marl slags will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3161453

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.