Process for producing L-epi-2-inosose and novel process for...

Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S072000, C435S074000, C435S148000, C435S155000, C435S105000

Reexamination Certificate

active

06818430

ABSTRACT:

TECHNICAL FIELD
This invention relates to a one-step process for the production of L-epi-2-inosose which has biological activities in itself and which is also of high value as a starting material for use in the synthesis of medicines and others, wherein a starting compound of inexpensive myo-inositol is used in the process and is converted into L-epi-2-inosose under the action of a microorganism, without involving any chemical synthetic method. This invention further relates to a process for the efficient production of epi-inositol which has biological activities in itself and is useful as a medicine, wherein L-epi-2-inosose is chemically reduced in the process.
BACKGROUND ART
Myo-inositol is a known substance of natural occurrence, which is represented by the following planar structural formula (A)
or by the following steric structural formula (A′)
L-Epi-2-inosose is a known substance represented by the following planar structural formula (B)
or by the following steric structural formula (B′)
Further, epi-inositol is a chemically synthesized substance already known, which is represented by the following planar structural formula (C)
or by the following steric structural formula (C′)
Epi-inositol is one of the stereo-isomers of myo-inositol.
Inososes (called also as penta-hydroxycyclohexanones or alicyclic ketohexoses) are generally known to have been synthesized by a biological oxidation of inositol [A. J. Kluyver and A. Boezaardt: “Rec. Trav. Chim.” 58, p.956 (1939)], by an enzymatic oxidation of inositol [L. Anderson et al.: “Arch. Biochem. Biophys.” 78, p.518 (1958)], by oxidation of inositol with air in the presence of a platinum catalyst [K. Heyns and H. Paulsen: “Chem. Ber.” 86, p.833 (1953)], or by oxidation of inositol with an oxidizing reagent such as nitric acid [T. Posternak: “Helv. Chim. Acta” 19, p.1333 (1936)].
As such inososes which may be produced by the biological oxidation or enzymatic oxidation of myo-inositol, one of the inositols, there has been known only one inosose, namely scyllo-inosose (called also as myo-inosose-2) [A. J. Kluyver and A. Boezaardt: “Rec. Trav. Chim.” 58, p.956 (1939); L. Anderson, et al.,: “Arch. Biochem. Biophys.” 78, p.518 (1958)]. There has not been reported any micro-organism which is capable of oxidizing myo-inositol into L-epi-2-inosose. L-epi-2-Inosose is useful as the starting material for the synthesis of D-chiro-inositol (abbreviated as DCI) [see U.S. Pat. No. 5,406,005]. DCI is useful as a medicine for the therapy of insulin-resistant diabetes (Published specification of WO90/10439) and is expected to be utilizable as a medicine for ameliorating polycystic ovary syndrome [J. A. Nestler et al.: “NEW Engl. J. Med.” 340, p.1314 (1999)]. As a known process for the preparation of L-epi-2-inosose, there is reported (1) a method wherein L-epi-2-inosose is synthesized by oxidizing myo-inositol with nitric acid to form a racemic mixture of DL-epi-2-inosose (that is, (±)-epi-2-inosose), then reducing the resultant racemic mixture with hydrogen in the presence of a platinum oxide catalyst to form epi-inositol, and microbiologically oxidizing the epi-inositol with a microorganism,
Acetobacter suboxydans
, to produce L-epi-2-inosose [T. Posternak: “Helv. Chim. Acta” 29, p.1991 (1946)]. There is also reported (2) a method wherein L-epi-2-inosose is synthesized as one of such compounds which can be produced by means of an acyloin-condensation of glucodialdose after said glucodialdose had chemically been synthesized from D-glucuronic acid (U.S. Pat. No. 5,406,005).
Inositol is a general name of hexa-hydric alcohols as derived from cyclohexane, and inositol includes nine stereo-isomers thereof. There have been found the naturally-occurring inositols which include, five inositols, namely myo-inositol, D-chiro-inositol, L-chiro-inositol, muco-inositol and scyllo-inositol. The other inositols include epi-inositol, allo-inositol, neo-inositol and cis-inositol. These latter four inositols are the non-naturally-occurring inositols, which have been produced by chemical syntheses. Of the non-naturally-occurring inositols, epi-inositol is expected to be utilizable as a medicine for ameliorating mental depression and anxiety syndrome [R. H. Belmaker et al., International Published Specification WO99/22727 of PCT Patent Application, PCT/IL/00523; and R. H. Belmaker et al, “Int. J. Neuro-psychopharmacol.” Vol.1, p.31 (1998)].
As the known processes of producing epi-inositol, there are reported (1) a process for synthesis of epi-inositol which comprises oxidizing myo-inositol with nitric acid to form a racemic mixture of D,L-epi-2-inososes, followed by reducing the latter with hydrogen in the presence of a platinum oxide catalyst [T. Posternak: “Helv. Chim. Acta” 29. p.1991 (1946)]; (2) a process for synthesis of epi-inositol which comprises oxidizing a di-hydric alcohol of cyclohexadiene with osmic acid [T. Tschamber et al, “Helv. Chim. Acta” 75, p.1052 (1992)]; (3) a process for synthesis of epi-inositol which comprises hydrogenating tetrahydrobenzoquinone [L. Odier: EP Application published Specification No. 524082]; and (4) a process for synthesis of epi-inositol which comprises protecting muco-inositol appropriately and then subjecting the protected derivative thereof to oxidation and reduction reactions in combination [K. E. Espelia et al, “Carbohydrate Res.” 46, p.53 (1976)]. Also, there is known a process for synthesis of epi-inositol which comprises subjecting glucose or galactose to a combination of Ferrier's cyclization reaction with a reducing reaction with a suitable reducing agent [Takahashi et al, “J. Org. Syn. Chem. Soc., Japan” 58, p.120 (2000)].
However, these known processes for the syntheses of L-epi-2-inosose and of epi-inositol are not necessarily satisfactory as such process which may be suited for large-scale production of epi-inositol, because the known processes have such problems that they are complexed to operate, involve environmental pollution and/or are too much expensive. Therefore, there exists keen demands for seeking such a novel process which can produce L-epi-2-inosose in a commercial scale and can operate in a facile way with a high efficiency, as well as such a novel process which can produce epi-inositol in a facile way with a high efficiency. An object of this invention is to provide such a novel process for the production of L-epi-2-inosose and such a process for the production of epi-inositol, which can satisfy the above demands and show many advantages and which can produce either L-epi-2-inosose or epi-inositol efficiently.
DISCLOSURE OF THE INVENTION
We, the present inventors, have eagerly made extensive studies to attain the above-mentioned object of this invention. As a result, we have now found that, when a new microbial strain, Xanthomonas sp. AB10119 strain, which has been isolated from a soil sample by us, is reacted in an aqueous reaction medium with myo-inositol which is available cheaply and has the formula (A) or (A′) shown in the above, the 4-hydroxyl group, of myo-inositol can be oxidized (or dehydrogenated) preferentially or substantially preferentially, thereby to produce L-epi-2-inosose of the above formula (B) or (B′). When L-epi-2-inosose so produced is isolated and examined by instrumental analyses such as nuclear magnetic resonance spectroscopic apparatus, mass spectrometric apparatus, polarimetric apparatus and so on, it is confirmed that the L-epi-2-inosose product so obtained is L-epi-2-inosose which has a high optical purity.
Further, we have searched if the microorganisms having an activity or ability to convert myo-inositol into L-epi-2-inosose are present in the natural field extensively. As a result, we have now found and confirmed that some microbial strains having a high activity or ability to oxidize and convert myo-inositol into L-epi-2-inosose exist among taxonomically many varieties of gr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing L-epi-2-inosose and novel process for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing L-epi-2-inosose and novel process for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing L-epi-2-inosose and novel process for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.