Process for producing high-purity potassium salts

Chemistry of inorganic compounds – Treating mixture to obtain metal containing compound – Alkali metal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C071S034000, C071S058000, C423S312000, C423S395000, C426S478000

Reexamination Certificate

active

06274105

ABSTRACT:

The present invention relates to the production of high-purity potassium salts from liquid agricultural or fermentation by-products. The present invention concerns, in particular, a new and selective process for producing high-purity potassium nitrate (KNO
3
) or potassium phosphate (KH
2
PO
4
) from liquid agricultural or fermentation by-products, such as cane molasses, beet molasses, vinasse, potato thick juice, brown juice from grass etc. The inventive process comprises the following unit operations: ion exchange, neutralization, concentration and crystallization. Importantly, this invention also comprises a process for producing an ingredient for animal feed with reduced potassium content.
BACKGROUND OF THE INVENTION
High-purity potassium nitrate or potassium phosphate is used in horticultural or technical applications. Its purity should be above 97% based on dry matter.
The easiest way to produce high-purity potassium nitrate or potassium phosphate is to use a neutralization process involving potassium hydroxide and the corresponding mineral acid (nitric acid or phosphoric acid). This process is, however, not commonly used on an industrial scale, being reserved for special applications due to the high price of potassium hydroxide.
Ion exchange processes have therefore been developed for the production of high-purity potassium nitrate or potassium phosphate. These potassium salts are formed from an inorganic potassium salt, particularly potassium chloride, and the corresponding mineral acid (nitric acid or phosphoric acid) by means of an ion exchange process. For potassium nitrate, this is described in patent documents CA 2027064 (Monomeras) and U.S. Pat. No. 3,993,466, and for potassium phosphate in EP 230 355 (AST). Beside the valuable potassium salt, the ion exchange processes also produce an impure hydrochloric acid solution, which is often regarded as waste.
Organic material can also be a source of potassium. The potassium level of plants is generally about 1 g/100 g dry matter. However, this level can vary. For sugar beet it is 1 g/100 g, for potato 1.8 g/100 g and for grass 2.54 g/100 g dry matter. Potassium often accumulates in by-products during the processing of agricultural crops. For example, during starch extraction from potatoes the potassium level in the by-product (potato thick juice) can be as high as 14 g/100 g dry matter.
Agricultural by-products, for example molasses, can be used for industrial fermentation processes. After the valuable product, for example bakers yeast, ethanol, citric acid, has been extracted from the fermentation brot, a liquid with an increased level of potassium is obtained. This liquid, the fermentation by-product, is often concentrated and called vinasse. The potassium content can be as high as 14 g/100 g dry matter.
In addition to potassium the agricultural and fermentation by-products contain valuable organic compounds such as amino acids, proteins, organic acids and sugars, and are therefore in many cases used as an ingredient in animal feed. High potassium level is, however, undesirable in animal feed because it can lead to health problems (for example hypomagnesia in cows) and increases the production of manure.
There are many examples in the literature of the partial removal of potassium from agricultural or fermentation by-products in order to increase their value as animal feed ingredients. Different technologies are described, such as crystallization, chromatography, electrodialysis and ion exchange:
removal of potassium by crystallization is described in patent applications NL 6800310 and NL 6800313, corresponding to DE 1817550 and DE 1900242 (for molasses) and NL 9200403 (for potato thick juice);
removal of potassium by chromatography is referred to in patent application WO 96/00776 (for vinasse);
removal of potassium by electrodialysis is described in Int. Sugar Journal, vol. 95 (1993), pages 243-247 and
removal of potassium by means of ion exchange is described in American Potato Journal, vol. 47 (1970), pages 326-336 (for potato juice).
The most common method used by industry for removing potassium from agricultural by-products is crystallization. Only part of the potassium can, however, be removed and about 3-6 g/100 g based on dry matter remains. The other technologies are more efficient and are able to reduce the level to 1.5 g/100 g dry substance, or even lower. Unfortunately electrodialysis and chromatography are, however, very sensitive to fouling by organic compounds and are therefore less suitable for removal of potassium from agricultural by-products on an industrial scale. Fouling can also be a serious problem in ion exchange technology, but there are several ways to prevent or reduce the effect of fouling during operation.
In the crystallization processes described, the chemical composition of the potassium-rich fraction is mainly potassium sulphate or syngenite (potassium-calcium sulphate) contaminated with organic compounds. For chromatography and electrodialysis, the main product is a mixture of organic potassium salts. For the ion exchange process, the chemical composition of the potassium-rich solution is mainly determined by the acid used for regeneration:
When hydrochloric acid is used, a mixture of potassium chloride and hydrochloric acid is produced.
When sulphuric acid is used, a mixture of potassium sulphate and sulphuric acid is produced.
Regeneration with nitric acid will yield a mixture of potassium nitrate and nitric acid. However, it was thought impossible to safely regenerate the resin with nitric acid in the presence of organic compounds. The main reason is the explosion hazard described in the literature for systems containing ion-exchange resin, organic compounds and nitric acid.
Regeneration of the ion-exchange resin with phosphoric acid will yield a mixture of potassium phosphate and phosphoric acid. Phosphoric acid is, however, known to be a rather weak acid and so not very effective in regeneration of a standard cation resin. The result is a large excess of phosphoric acid in the potassium phosphate/phosphoric acid solution. No references could be found in the literature for describing regeneration of a cation resin loaded with potassium for producing potassium phosphate.
In all the publications relating to this subject, little or no attention is given to further downstream processing of the potassium-rich fraction to increase its purity and value The production of a high-purity potassium salt from an agricultural or fermentation by-product was considered impossible due to the large amount of organic impurities present. Further, none of the references refer to the production of high-purity potassium nitrate or potassium phosphate from an agricultural or fermentation by-product.
BRIEF DESCRIPTION OF THE INVENTION
The present invention provides a new, effective process for the production of potassium nitrate or potassium phosphate from liquid agricultural or fermentation by-products according to the attached claims. The process comprises the following unit operations: ion exchange, neutralization, concentration and crystallization. Optionally, but preferably, clarification is included as an initial step. In the present inventive process, regeneration of the ion-exchange resin is carried out with nitric acid or phosphoric acid, leading to the production of a solution of potassium nitrate
itric acid or a solution of potassium phosphatelphosphoric acid. Highpurity potassium salts are obtained after neutralization by means of crystallizaton Due to their high purity, the potassium salts can be used in horticultural or technical applications The low-potassium by-product obtained after ion exchange can be used directly or in concentrated form for example as an ingredient in animal feed, thereby increasing its value.
The advantage of this process over existing ion exchange processes, which use an inorganic potassium salt, is that two valuable products are produced. By contrast, the existing processes produce one valuable product and one waste product, impure hydrochloric acid solution.


R

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing high-purity potassium salts does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing high-purity potassium salts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing high-purity potassium salts will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.