Metal treatment – Process of modifying or maintaining internal physical... – Magnetic materials
Reexamination Certificate
2000-01-28
2001-12-18
Sheehan, John P. (Department: 1742)
Metal treatment
Process of modifying or maintaining internal physical...
Magnetic materials
C148S113000
Reexamination Certificate
active
06331215
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to grain-oriented electromagnetic steel sheets typically used as iron cores in electric generators and transformers, for example. More particularly, the invention relates to a grain-oriented electromagnetic steel sheet having a low ratio of iron loss in a weaker magnetic field to iron loss in a stronger magnetic field. Such sheets are suitably applicable to iron cores for small size electric generators and as E.I. cores for small scale transformers. The invention further relates to a process for production of such steel sheets.
2. Description of the Related Art
Grain-oriented electromagnetic steel sheets are used as iron core materials particularly for large-scale transformers and other electrical equipment. In general, such a steel sheet is required to have a low iron loss taken as the loss occurring upon magnetization of the steel sheet to 1.7 T at 50 Hz, and defined as W
17/50
(W/kg). As a consequence, intensive research has been conducted with a view to reducing the value of W
17/50
. To prevent hysteresis loss among other iron losses, a certain technique is disclosed which causes the crystal grains of the finished steel sheet to be converged to the full extent possible to a {110} <001> orientation in which easy-to-magnetize axes <001> are arranged in a regular order in the rolling direction.
The grain-oriented electromagnetic steel sheet has been produced generally by use of complex process steps:
1) A slab 100 to 300 mm in thickness is subjected to heating and subsequently to hot rolling consisting of rough rolling and finish rolling, to prepare a hot-rolled sheet.
2) The hot-rolled sheet is cold-rolled once or twice or more times with intermediate annealing to reach a final sheet thickness.
3) The cold-rolled sheet is decarburization-annealed.
4) With an annealing separator coated over the decarburization-annealed sheet, finish annealing is performed to attain secondary recrystallization and purification.
5) Flattening annealing and insulating coating are applied to the finishing-annealed sheet, whereby a steel sheet product is obtained.
In the above method, those crystal grains directed to a {110} <001> orientation are allowed to grow through secondary recrystallization while in finishing annealing. To permit crystal grains to be grown in a {110} <001> orientation in an effectively conducted manner by means of secondary recrystallization, it is of importance that precipitation (commonly using an inhibitor) be made dispersible into a uniform and proper size, causing the inhibitor to prevent growth of crystal grains primarily recrystallized. One suitable inhibitor is typified by sulfides such as MnS, Se compounds such as MnSe, nitrides such as AIN and VN and so on, but they have a markedly weak tendency to dissolve into the steel.
In a conventional method of properly controlling such an inhibitor, the inhibitor has been completely solid-solubilized upon heating of the slab prior to hot rolling, followed by precipitation of such inhibitor in a subsequent hot rolling stage. In this instance, the slab needs to be heated at a temperature of about 1,400° C. to produce a fully solid-solubilized inhibitor. This temperature is higher by about 200° C. than that usually used in heating a steel slab. Slab heating at such a high temperature suffers from the following defects.
1) Substantial energy is consumed due to heating at an elevated temperature.
2) Melt scale and slab sagging tend to take place.
3) Excessive decarburization is likely to occur on the slab surface.
To solve the above defects 1) and 2) above, use of an induction heating furnace has been proposed for exclusive use in producing the grain-oriented electromagnetic steel sheet. However, such furnace causes a rise in energy cost. There is a keen demand for saving energy. To date, therefore, many persons skilled in the art have endeavored to practice slab heating at lower temperatures.
For instance, Japanese Examined Patent Publication No. 54-24685 discloses that the slab heating temperature can be set in a range of 1,050 to 1,350° C. by incorporating into the steel such elements as As, Bi, Sb and the like, that segregate at a grain boundary, and by taking advantage of these elements as inhibitors. Japanese Unexamined Patent Publication No. 57-158332 teaches that the slab heating temperature can be lowered and the Mn content reduced with an Mn/S ratio of below 2.5, and that secondary recrystallization can be stably effected by addition of Cu. Additionally, Japanese Unexamined Patent Publication No. 57-89433 discloses conducting slab heating at a reduced temperature of 1,100 to 1,250° C. by adding elements such as S, Se, Sb, Bi, Pb, B and the like together with Mn, and by taking a columnar structure ratio of the slab in combination with reduction of secondary cold rolling. However, since such known techniques are designed to omit AlN as an inhibitor having an extremely weak ability to dissolve into the steel, they fail to produce sufficient benefit from the inhibitors used, and hence create magnetic characteristics that are still far from acceptable. Eventually they have been used only for laboratory purposes.
In Japanese Unexamined Patent Publication No. 59-190324, a technique is taught in which pulse annealing can be employed at the time of annealing for primary recrystallization. This mode of production is also useful on a laboratory scale, but not on a commercial basis. Japanese Unexamined Patent Publication No. 59-56522 discloses heating a slab at a lower temperature with the Mn controlled to a content of 0.08 to 0.45% and with S less than 0.007%; Japanese Unexamined Patent Publication No. 59-190325 teaches stabilizing secondary recrystallization by further incorporation of Cr in the composition of 59-190325 cited above. While such prior art techniques are characterized with a small content of S, MnS is caused to solid-solubilize during slab heating, and such techniques have the disadvantage that upon use of their respective steel sheets for heavy weight coils, the resultant magnetic characteristics become irregular in the widthwise or lengthwise direction.
Japanese Unexamined Patent Publication No. 57-207114 discloses using a composition having a noticeably low content of carbon (C: 0.002 to 0.010%) in combination with a low slab heating temperature. This is attributable to the fact that where the slab heating temperature is low, absence of exposure to the austenite phase at stages from solidification to hot rolling is rather desirable for effecting subsequent secondary recrystallization. Such a low carbon content can avoid breakage during cold rolling, but nitridation is necessary in decarburization annealing in order to ensure stable secondary recrystallization.
With that technique in view, considerable technological development has been conducted on the basis that intermediate nitridation is employed. Namely, Japanese Unexamined Patent Publication No. 62-70521 discloses specifying finishing-annealing conditions and thus conducting slab heating at a low temperature by means of intermediate nitridation while in finishing annealing. Moreover, Japanese Unexamined Patent Publication No. 62-40315 teaches incorporating Al and N in amounts that cannot undergo solid solubilization during slab heating, thereby controlling the associated inhibitor in a proper state with reliance upon intermediate nitridation. Intermediate nitridation at the time of decarburization annealing, however, poses the drawback that it needs added equipment and hence increased cost. Another but serious drawback is that it is difficult to control nitridation in the step of finishing annealing.
On the other hand, one difficulty has of late arisen that the iron loss properties of a starting material do not always conform to those of the end-use product resulting from such material. It has been found, in fact, that in the case of iron cores for large-scale transformers, a starting material having a low value of W
17/50
l
Honda Atsuhito
Komatsubara Michiro
Sadahiro Kenichi
Senda Kunihiro
Toge Tetsuo
Kawasaki Steel Corporation
Schnader Harrison Segal & Lewis LLP
Sheehan John P.
LandOfFree
Process for producing grain-oriented electromagnetic steel... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for producing grain-oriented electromagnetic steel..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing grain-oriented electromagnetic steel... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2575419