Process for producing aromatic polycarboxylic acid

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C562S408000, C562S409000

Reexamination Certificate

active

06458994

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for producing an aromatic polycarboxylic acid by liquid phase oxidation of polyalkyl-substituted aromatic aldehyde and/or oxide derivative thereof, and specifically, to process for producing trimellitic acid or pyromellitic acid.
2. Prior Art
As industrial processes for producing trimellitic acid, a process comprising air-oxidizing psuedocumene as a raw material in an acetic acid solvent in the presence of a cobalt-manganese-bromine catalyst and a process comprising air-oxidizing 2,4-dimethyl benzaldehyde, 2,5-dimethyl benzaldehyde and 3,4-dimethyl benzaldehyde or 2,4-dimethyl benzoic acid, 2,5-dimethyl benzoic acid and 3,4-dimethyl benzoic acid of oxide derivative thereof as raw materials in water solvent in the presence of a catalyst containing bromine and manganese or cerium are widely known. As industrial processes for producing pyromellitic acid, a process comprising air-oxidizing durene as a raw material in an acetic acid solvent in the presence of a cobalt-manganese-bromine catalyst and a process comprising air-oxidizing 2,4,5-trimethyl benzaldehyde or 2,4,5-trimethyl benzoic acid of an oxide derivative thereof as a raw material in water solvent in the presence of a bromine-manganese-iron catalyst are known.
Among above-mentioned known processes, regarding the process comprising air-oxidizing psuedocumene in an acetic acid solvent, a production art of aromatic dicarboxylic acid, e.g., terephthalic acid has been applied to oxidation of psuedocumene. The reaction in the production of terephthalic acid is comparatively readily completed, i.e., continuously and about quantitatively completed in the presence of a comparatively low concentration of catalyst and promotor. In contrast, oxidation of psuedocumene has a defect that the metal catalyst forms a salt with trimellitic acid of a product to deposit, so that activity of the catalyst is degraded and the reaction does not readily progress.
Japanese Patent No. 2939346 describes that air oxidation of psuedocumene is performed semi-continuously or in a batch wise while controlling the first stage of the reaction to a comparatively low temperature and then in a batch wise while controlling the second stage of the reaction to a comparatively high temperature and most bromine catalyst and trivalent cerium are added at the second stage to decrease contact of trimellitic acid as a product with a zirconium-cobalt-manganese-bromine catalyst and to depress degradation of catalyst activity due to formation of an insoluble salt of trimellitic acid with zirconium, cobalt and manganese, whereby the yield of trimellitic acid is improved.
Japanese Patent Publication No. 7-55917 discloses a process for producing pyromellitic acid comprising air-oxidizing durene in an acetic acid solvent in the same manner as in the above-mentioned process for producing trimellitic acid.
On the other hand, Japanese Patent Publication No. 58-2222 describes that polyalkyl-substituted aromatic aldehyde or oxide derivative thereof is oxidized with molecular oxygen in water solvent in the presence of a bromine and a metal ion catalyst selected from the group consisting of manganese and cerium while maintaining an oxygen concentration in an exhaust gas in an outlet of the reactor to 3% or above, whereby the corresponding aromatic polycarboxylic acid can be obtained readily in a high yield in one stage reaction. The process provides advantages that there is no combustion of solvent and no recovery step of solvent is required on account of water solvent and furthermore continuous reaction can be performed since no degradation of catalyst activity due to formation of a salt of the metal catalyst with trimellitic acid or pyromellitic acid of a product occurs.
Japanese Patent Publication No. 7-116097 discloses a process comprising oxidizing 2,4,5-trimethyl benzaldehyde with a molecular oxygen-containing gas in water solvent containing bromine ion, manganese ion and iron ion to depress combustion of 2,4,5-trimethyl benzaldehyde, thereby improving the yield of pyromellitic acid.
Trimellitic acid has been widely used as a raw material for alkyd resins, high grade plasticizers, polyamideimides and polyesters. Pyromellitic acid is very useful as a raw material for cross linking agents for foam polyester, particular plasticizers, polyimides and powder coating agents. In order to use trimellitic acid and pyromellitic acid as these raw materials, a high purity of product thereof is required.
The process for producing trimellitic acid disclosed in Japanese Patent No. 2939346 comprising air-oxidizing psuedocumene in an acetic acid solvent has defects that the operation is complicated since it is necessary to control carefully and change a temperature and a water concentration in the reaction liquid; a high price catalysts such as cobalt zirconium and cerium are used; there is combustion of acetic acid as solvent and a recovery equipment of acetic acid as solvent is necessary.
The process for producing pyromellitic acid disclosed in Japanese Patent Publication No.7-55917 comprising air-oxidizing durene in an acetic acid solvent is not economical from the aspects that a high price is imposed on durene of the raw material since it is difficult to obtain it and the yield of pyromellitic acid is about 60 mol% since the oxidation reaction is more difficult than that in the process for producing trimellitic acid comprising air-oxidizing psuedocumene in an acetic acid solvent.
The processes for producing trimellitic acid and pyromellitic acid disclosed in Japanese Patent Publication Nos. 58-2222 and 7-116097 comprising oxidizing polyalkyl-substituted aromatic aldehyde or oxide derivative thereof with molecular oxygen in water solvent can overcome the defects in the process used an acetic acid solvent, but it is necessary to reduce further organic bromine compounds and oxidation intermediates produced as by-products in order to obtain the intended substance in a high yield.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a process for producing trimellitic acid or pyromellitic acid comprising oxidizing polycakyl-substituted aromatic aldehyde and/or oxide derivative thereof in which by-product content is small and a high yield can be obtained.
As a result of extensive studies to solve above-mentioned prior art problems, the inventors have found that polyalkyl-substituted aromatic aldehyde and/or oxide derivative thereof as raw material for oxidation is oxidized with molecular oxygen in water solvent in the presence of a catalyst containing bromine or both bromine and a heavy metal(s) at 180 to 280 ° C. wherein the raw material for oxidation and the catalyst are fed to perform the reaction and then bromine in the catalyst is further added thereto to perform further the reaction, whereby the amount of organic bromine compounds and oxide intermediates to be by-produced are reduced and the yield of trimellitic acid or pyromellitic acid of intended substances is improved, and have accomplished the present invention.
That is, a process for producing a polycarboxylic acid which comprises performing liquid phase oxidation of polyalkyl-substituted aromatic aldehyde and/or oxide derivative of polyalkyl-substituted aromatic aldehyde as raw material for oxidation with molecular oxygen at two stages in water solvent in the presence of a catalyst comprising bromine or both bromine and a heavy metal(s) at a temperature of 180 to 280° C., thereby producing trimellitic acid or pyromellitic acid, wherein said liquid phase oxidation is performed in a continuous operation at the first stage and in a continuous operation or in a batch operation at the second stage and a total amount of bromine in said catalyst is divided to add separately at each the first stage and the second stage.
DETAILED DESCRIPTION OF THE INVENTION
Examples of polyalkyl-substituted aromatic aldehyde of a raw material for oxidation include 2,4-dimethyl benzaldehyde, 2,5-dimethyl benzaldehyde and 3,4-dimethyl benzalde

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing aromatic polycarboxylic acid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing aromatic polycarboxylic acid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing aromatic polycarboxylic acid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2933744

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.