Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Treating polymer containing material or treating a solid...
Reexamination Certificate
1999-07-29
2001-01-23
Truong, Duc (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Treating polymer containing material or treating a solid...
C528S503000, C528S422000, C528S423000, C528S072000, C528S080000, C528S287000
Reexamination Certificate
active
06177541
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an isocyanurate derivative obtainable by a reaction of tris-(2,3-epoxypropyl) isocyanurate with a carboxyl group-containing compound, which is excellent in heat resistance. This isocyanurate derivative is a highly viscous liquid which has heat resistance attributable to a triazine ring and water-solubility attributable to hydroxyl groups and which contains little ionic chlorine, and it is useful as e.g. a thickening agent in an electric or electrical field for e.g. a flux composition.
2. Discussion of Background
As a catalyst for a reaction of an epoxy compound such as tris-(2,3-epoxypropyl) isocyanurate, with a carboxyl group-containing compound, a tertiary amine or a quaternary ammonium salt is commonly used, but such a catalyst is likely to often bring about a ring-opening polymerization reaction of epoxy groups as a side reaction to form an insoluble substance. JP-A-2-275867 discloses a reaction product of tris-(2,3-epoxypropyl) isocyanurate with a carboxyl group-containing compound, and a process for its production. However, if a quaternary ammonium salt is used as the catalyst disclosed in the Examples, or if the reaction is carried out at a high temperature in the absence of a catalyst, a part of tris-(2,3-epoxypropyl) isocyanurate undergoes ring-opening polymerization to form an insoluble substance as a by-product. Since the product is highly viscous liquid, there has been a problem that it has to be diluted with a solvent or heated to a high temperature to reduce the viscosity and remove the insoluble substance by filtration while it is still hot. Further, if a quaternary ammonium chloride is used, and if it remains in the product, it may adversely affect the electrical properties, since it is a substance having ionic chlorine.
Further, epichlorohydrin is used as a starting material in the process for producing tris-(2,3-epoxypropyl) isocyanurate, and if an ethylene chlorohydrin moiety as an epoxy precursor is present, such a moiety will remain in the molecule as hydrolyzable chlorine. This hydrolyzable chlorine does not usually change to ionic chlorine hazardous to the field of electronic and electric materials, even when treated at a high temperature for a long time. This may be explained in such a way that even if dehydrochlorination takes place to form ionic chlorine, such ionic chlorine will immediately undergo an addition reaction with an epoxy group present in the vicinity to again become to be an ethylene chlorohydrin moiety. Accordingly, usual tris-(2,3-epoxypropyl) isocyanurate contains no ionic chlorine.
However, when a reaction product of tris-(2,3-epoxypropyl) isocyanurate with a carboxyl group-containing compound is produced, formation of ionic chlorine has been observed surprisingly.
Namely, it has been difficult to obtain a reaction product of tris-(2,3-epoxypropyl) isocyanurate with a carboxyl group-containing compound, which contains little ionic chlorine and is free from an insoluble substance, by the conventional technology.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a novel process for producing an isocyanurate derivative which is free from an insoluble substance and transparent and which has very little ionic chlorine content, for the production of an isocyanurate derivative as an addition reaction product with a carboxyl group-containing compound, by using, as a starting material, tris-(2,3-epoxypropyl) isocyanurate containing hydrolyzable chlorine.
In the first aspect, the present invention provides a process for producing an isocyanurate derivative of the formula (1):
wherein either one of X
1
and X
2
is a R
1
COO group and the other is a OH group, either one of Y
1
and Y
2
is a R
2
COO group and the other is a OH group, either one of Z
1
and Z
2
is a R
3
COO group and the other is a OH group, and each of R
1
, R
2
and R
3
is a C
1-7
organic group, having an ionic chlorine atom content of from 0.1 to 5 ppm, which comprises a first step of forming a reaction solution containing (A) tris-(2,3-epoxypropyl) isocyanurate containing from 10 to 3,000 ppm of hydrolyzable chlorine and (B) a carboxyl group-containing compound in the presence of (C) an arylphosphine and/or a phosphonium salt comprising a non-halogen anion, in such a ratio that the carboxyl group in component (B) is from 1.02 to 1.50 mols per mol of the epoxy group in component (A), and then carrying out a reaction until the concentration of the epoxy group in the reaction solution decreases to a level of from 0.3 to 0.6 eq/kg, and a second step of maintaining the reaction solution at a temperature within a range of from 80 to 130° C. for H hours, provided 0.2×2.5
n
≦H≦2×2.5
n
, where n=0.1(110−T) where T is the temperature (° C.), to bring the concentration of the epoxy group in the reaction solution to a level of less than 0.1 eq/kg.
In the second aspect, the present invention provides the process for producing an isocyanurate derivative according to the first aspect, wherein the carboxyl group-containing compound of component (B) is at least one member selected from the group consisting of a C
2-4
monocarboxylic acid, a C
2-8
polycarboxylic acid and a C
2-8
hydroxycarboxylic acid.
In the third aspect, the present invention provides the process for producing an isocyanurate derivative according to the first aspect, wherein the carboxyl group-containing compound of component (B) is acetic acid, hydroxyacetic acid, lactic acid, or a mixture thereof.
In the fourth aspect, the present invention provides the process for producing an isocyanurate derivative according to any one of the first to third aspects, wherein in the first step, the reaction is carried out in such a manner that component (B) having component (C) dissolved therein, is added to component A).
In the fifth aspect, the present invention provides the process for producing an isocyanurate derivative according to any one of the first to third aspects, wherein in the first step, the reaction is carried out in such a manner that component (C) dissolved in an aprotic organic solvent, is mixed to component (A), and then, component (B) is added thereto.
In the sixth aspect, the present invention provides the process for producing an isocyanurate derivative according to any one of the first to fifth aspects, wherein in the first step, a polyol is added.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Component (A) to be used in the present invention is ris-(2,3-epoxypropyl) isocyanurate containing from 10 to 3,000 ppm of hydrolyzable chlorine. The content of hydrolyzable chlorine contained in tris-(2,3-epoxypropyl) isocyanurate should better be small. However, when tris-(2,3-epoxypropyl) isocyanurate is produced, a compound will usually be formed wherein some of three epoxy groups in the molecule will remain in the form of an ethylene chlorohydrin moiety [—CH
2
CH(OH)CH
2
Cl] as a precursor for an epoxy group, and such a compound will be contained as an impurity in the tris-(2,3-epoxypropyl) isocyanurate product. In the present invention, the tris-(2,3-epoxypropyl) isocyanurate product containing hydrolyzable chlorine derived from such an ethylene chlorohydrin moiety in the above-mentioned proportion, is used as component (A). As such tris-(2,3-epoxypropyl) isocyanurate, a commercial product available under a tradename TEPIC-S (manufactured by Nissan Chemical Industries, Ltd., hydrolyzable chlorine: from 700 to 900 ppm on average) may, for example, be used. The hydrolyzable chlorine can be reduced by repeating recrystallization for a few times, but it is necessary to select the desired starting material taking the labor and costs for recrystallization into consideration.
If the hydrolyzable chlorine in the starting material exceeds 3,000 ppm, ionic chlorine in the isocyanurate derivative is likely to increase substantially due to a slight change in the thermal history, such being undesirable.
The carboxyl group-containing compound to be used for component
Gunji Yasuhiro
Ikeda Hisao
Koda Toshinari
Nissan Chemical Industries Ltd.
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Truong Duc
LandOfFree
Process for producing an isocyanurate derivative does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for producing an isocyanurate derivative, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing an isocyanurate derivative will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2464909