PROCESS FOR PRODUCING AN ELECTRODE MATERIAL FOR A...

Compositions – Electrically conductive or emissive compositions – Metal compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S500000, C252S518100, C252S519500, C420S557000, C420S563000, C420S576000, C420S577000, C423S089000, C423S087000, C423S099000, C423S138000, C429S226000, C429S218100, C429S231500

Reexamination Certificate

active

06835332

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for producing an electrode material which can be desirably used in the production of a rechargeable lithium battery in which oxidation-reduction reaction of lithium (comprising oxidation reaction of lithium and reduction reaction of lithium ion) is used (this battery will be hereinafter referred to as rechargeable lithium battery for simplification purpose), an electrode structural body using said electrode material, a rechargeable lithium battery whose electrode comprising said electrode structural body, a process for producing said electrode structural body, and a process for producing said rechargeable lithium battery. More particularly, the present invention relates to an electrode structural body for a rechargeable lithium battery, which is constituted by an electrode material comprising a specific, amorphous alloy material capable of being alloyed with lithium and which provides a high capacity and a prolonged cycle life for said battery and to a rechargeable lithium battery having an anode comprising said electrode structural body and which has a high capacity and a prolonged cycle life. The present invention includes a process for producing said electrode structural body and a process for producing said rechargeable lithium battery.
2. Prior Art
In recent years, the global warming of the earth because of the so-called greenhouse effect to an increase in the content of CO
2
gas in the air has been predicted. For instance, in thermal electric power plants, thermal energy obtained by burning a fossil fuel is converted into electric energy, and along with burning of such fossil fuels a large amount of CO
2
gas is exhausted in the air. Accordingly, in order to suppress this situation, there is a tendency of prohibiting to newly establish a thermal electric power plant under these circumstance, so-called load leveling practice has been proposed in order to effectively utilize electric powers generated by power generators in thermal electric power plants or the like, wherein a surplus power unused in the night is stored in rechargeable batteries installed at general houses and the power thus stored is used in the daytime when the demand for power is increased, whereby the power consumption is leveled.
Now, for electric vehicles which do not exhaust anya'r polluting substances such as CO
2
, NO
x
, hydrocarbons and the like, there is an increased demand for developing a high performance rechargeable battery with a high energy density which can be effectively used therein. Besides, there is also an increased demand for developing a miniature, lightweight, high performance rechargeable battery usable as a power source for portable instruments such as small personal computers, word processors, video cameras, and cellular phones.
As such miniature, lightweight and high performance rechargeable battery, there have proposed various rocking chair type lithium ion batteries in which a carbonous material such as graphite capable of intercalating lithium ion at intercalation sites of its six-membered network plane provided by carbon atoms in the battery reaction upon charging is used as an anode material and a lithium intercalation compound capable of deintercalating said lithium ion from the intercalation in the battery reaction upon charging is used as a cathode material, Some of these lithium ion batteries have been practically used. However, for any of these lithium ion batteries whose anode comprising the carbonous material (the graphite), the theoretical amount of lithium which can be intercalated by the anode is only an amount of ⅙ per carbon atom. Because of this, in such lithium icon battery, when the amount of lithium intercalated by the anode comprising the carbonous material (the graphite) is made greater than the theoretical amount upon performing charging operation or when charging operation is performed under condition of high electric current density, there will be an unavoidable problem such that lithium is deposited in a dendritic state (that is, in the form of a dendrite) on the surface of the anode. This will result in causing internal-shorts between the anode and the cathode upon repeating the charging and discharging cycle. Therefore, it is difficult for the lithium ion battery whose anode comprising the carbonous material (the graphite) to achieve a sufficient charging and discharging cycle life. In addition, using this battery design, it is extremely difficult to attain a desirable rechargeable battery having a high energy density comparable to that of a primary lithium battery in which a metallic lithium is used as the anode active material.
Now, rechargeable lithium batteries in which a metallic lithium is used as the anode have been proposed and they have attracted public attention in a viewpoint that they exhibit a high energy density. However, such rechargeable battery is not practically usable one because its charging and discharging cycle life is extremely short. A main reason why the charging and discharging cycle life is extremely short has been generally considered as will be described in the following. The metallic lithium as the anode reacts with impurities such as moisture or an organic solvent contained an electrolyte solution to form an insulating film or/and the metallic lithium as the anode has a irregular surface with portions to which electric field is converged, and these factors lead to generating a dendrite of lithium upon repeating the charging and discharging cycle, resulting in internal-shorts between the anode and cathode. As a result, the charging and discharging cycle life of the rechargeable battery is extremely shortened.
When the lithium dendrite is grown to make the anode and cathode such that the anode is internally shorted with the cathode as above described, the energy possessed by the battery is rapidly consumed at the internally shorted portion. This situate on often creates problems in that the battery is heated or the solvent of the electrolyte is decomposed by virtue of heat to generate gas, resulting in an increase in the inner pressure of the battery. Thus, the growth of the lithium dendrite tends to cause internal-shorts between the anode and the cathode whereby occurring such problems as above described, where the battery is damaged or/and the lifetime of the battery is shortened.
In order to eliminate the above problems for such rechargeable battery in which the metallic lithium is used as the anode, specifically, in order to suppress the progress of the reaction between the metallic lithium of the anode and the moisture or the organic solvent contained in the electrolyte solution, there has been proposed a method of using a lithium alloy such as a lithium-aluminum alloy as the anode. However, this method is not widely applicable in practice for the following reasons. The lithium alloy is hard and is difficult to wind into a spiral form and therefore, it is difficult to produce a spiral-wound cylindrical rechargeable battery. Accordingly, it is difficult to attain a rechargeable battery having a sufficiently long charging and discharging cycle life. It is also difficult to attain a rechargeable battery having a desirable energy density similar to that of a primary battery in which a metallic lithium is used as the anode.
Japanese Unexamined Patent Publications Nos. 64239/1996, 62464/1991, 12768/1990, 113366/1987, 15761/1987, 93866/1987, and 78434/1979 disclose various metals, i.e. Al, Cd, In, Su, Sb, Pb, and B; which are capable of forming an alloy with lithium in a rechargeable battery when the battery is subjected to charging, and rechargeable batteries in which these metals, alloys of these metals, or alloys of these metals with lithium are used as the anodes. However, the above-mentioned publications do not detail about the configurations of the anodes.
By the way, when any of the foregoing alloy materials is fabricated into a plate-like form such as a foil form which is generally adopted as all electrode

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

PROCESS FOR PRODUCING AN ELECTRODE MATERIAL FOR A... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with PROCESS FOR PRODUCING AN ELECTRODE MATERIAL FOR A..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and PROCESS FOR PRODUCING AN ELECTRODE MATERIAL FOR A... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3289478

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.