Process for producing a piezoelectric element using a first...

Coating processes – Electrical product produced – Piezoelectric properties

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S126000, C426S126000, C426S419000, C029S025350

Reexamination Certificate

active

06551652

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a piezoelectric element and a process for producing the same, and more particularly to a piezoelectric element fit for use in converting electric energy to mechanical energy and vice versa in various kinds of equipment such as an actuator, a pressure sensor, a temperature sensor and so forth.
2. Description of Related Art
Previously, piezoelectric elements have been employed as vibrators, that is, as driving sources for discharging ink from ink-jet recording heads, for example. A piezoelectric element is generally structured so that the piezoelectric element has a poly-crystalline piezoelectric film, an upper electrode and a lower electrode with the piezoelectric film held between the electrodes. Platinum is used for the lower electrode, and titanium or a titanium oxide is used as an adhesion layer between the platinum and an underlying substrate.
The piezoelectric film is generally fabricated with Pb(Zr,Ti)O
3
(hereinafter called “PZT”) as the principal component of a three-component system with a third component added to the two-component PZT. The piezoelectric film having such a composition may be formed through a sputtering, sol-gel, laser abrasion, or CVD method.
When the aforesaid piezoelectric element is applied to the actuator of an ink-jet recording head, a piezoelectric film (PZT film) is required to be about 0.5 &mgr;m 20 &mgr;m thick, for example, and is also required to have a high piezoelectric distortion constant. In order to obtain a piezoelectric film having such a high piezoelectric distortion constant, the film has to be annealed (heat-treated) at about 600° C.-700° C. to attain the growth of crystalline grains in the piezoelectric film.
When the PZT film having a thickness of about 0.5 &mgr;m-20 &mgr;m, for example, is formed by the sol-gel method, the sol of the PZT film is subjected to spin-coating for drying and pyrolyzing purposes in several cycles. Then, the products are subjected to pre-annealing as a first step. The sol is further subjected to spin-coating for drying and pyrolyzing purposes in several cycles, and then the products are subjected to annealing as a second step. Incidentally, the PZT film is usually formed by the use of sols having the same composition for the whole layer.
When a PZT film having the aforesaid thickness is formed, there develops a problem arising from a crack in the film obtained through the step of annealing the film after it is coated with the sol once. In order to solve this problem, the sol is subjected separately to spin-coating a plurality of times.
In the method of separately subjecting the sol to spin-coating a plurality of times, however, more lead ingredient is evaporated from the then uppermost layer at the time of pre-annealing and the then uppermost layer at the time of annealing than is evaporated from the multi-layer structure. The lead may also be diffused into the base (substrate). Both effects result in the decrease of the quantity of lead in the surface layer. For this reason, there develops a problem arising from a mismatching plane in the grain boundary of the layer formed at the time of pre-annealing the PZT film (hereinafter may be called the “lower layer) and the layer formed at the time of annealing (hereinafter may be called the “upper layer”). Moreover, another problem is that a decrease in the quantity of lead in the surface makes this surface portion have low-dielectric characteristics which tends to lower the piezoelectric characteristics.
The relation between x and y in a composition which is expressed by the general term A
x
B
y
O
3
for use in forming the piezoelectric film becomes y>x instead of x:y=1:1 as it should have been. This creates a problem because the B site becomes excessive and affects crystalline growth, and the piezoelectric characteristics are reduced as the crystal orientation is lowered.
To combat this problem, a method of excessively adding lead to the sol of the PZT film has been devised. However, the addition of excess lead decreases the withstand voltage of the film, which offsets any improvements in the piezoelectric characteristics.
SUMMARY OF THE INVENTION
An object of the present invention is to solve the foregoing problems by providing a piezoelectric element with improved piezoelectric and dielectric characteristics and a method of producing such a piezoelectric element which does not degrade the withstand voltage of the film.
In order to accomplish the object above, a piezoelectric element according to the present invention comprises a piezoelectric film, an upper electrode and a lower electrode with the piezoelectric film held between the electrodes is structured such that the piezoelectric film is formed through the steps of forming a film by applying a first sol for forming the piezoelectric film at least once, forming a film on the film coated with the first sol by applying a second sol having a greater lead content than the first sol, and subjecting both films to heat treatment at a predetermined temperature.
The piezoelectric film can further be built up by forming a film on the heat-treated film by applying the first sol at least once, forming a film on the film coated with the first sol by applying the second sol, and subjecting both the films to heat treatment at a predetermined temperature.
In the piezoelectric element thus formed, the ratio of lead in the thickness direction of the piezoelectric film is more uniform than the piezoelectric film of a conventional piezoelectric element. In other words, a difference in the existing quantity of lead along the thickness of the film is minimized, whereby both piezoelectric and dielectric characteristics are improved.
Further, a piezoelectric element comprising a piezoelectric film, an upper electrode and a lower electrode with the piezoelectric film held between the electrodes is such that the piezoelectric film is expressed by the general chemical formula A
x
B
y
O
3
(where, A=Pb, La or Ca or a combination thereof; and B═Ti, Zr, Mg or Nb, or a combination thereof with a stoichiometric ratio of x to y expressed by x:y=1:1). When x=1 is set to 100%, the difference in the existing quantity of lead along the thickness of the film is 44% or less. Moreover, the piezoelectric film has a Perovskite structure.
The piezoelectric and dielectric characteristics are both improved as lead uniformly exists in the piezoelectric film as compared with the conventional film.
A process for producing a piezoelectric element comprising a piezoelectric film, an upper electrode and a lower electrode with the piezoelectric film held therebetween according to the present invention comprises the steps of first applying at least once, a first sol for use in forming the piezoelectric film on a substrate having the lower electrode formed thereon; second, applying a second sol having a greater lead content than the first sol; and third, subjecting the resulting films to heat treatment at a predetermined temperature after the second step.
In this process for producing a piezoelectric element, even though more of the lead component is evaporated from the layer formed with the second sol than any other layer or is caused to be diffused into the base (substrate) when the heat treatment is made at the third step, the content of lead in this layer is prevented from becoming smaller than that in the underlying structure because the content of lead has been increased therein beforehand.
A cycle comprising the first, second and third steps may be repeated at least once after the termination of the third step. Thus, the piezoelectric film is formed free from a crack, and a piezoelectric film having any desired thickness can be manufactured. With the above process, a mismatching plane is prevented from being formed on the grain boundary between the layers of films in each cycle.
The second sol may contain lead in greater amounts than the lead contained in the piezoelectric film which is desired and to be ultimately obtained

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing a piezoelectric element using a first... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing a piezoelectric element using a first..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing a piezoelectric element using a first... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3015699

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.