Process for producing a natural implant

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Method of manufacturing prosthetic device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S023720, C623S023760, C435S285100

Reexamination Certificate

active

06187053

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a process for producing a natural implant. In known tissue engineering (WO 94/20151), it is conventional to use a three-dimensional cell base or matrix to which the cells are applied and in which the cells can be placed. This matrix may consist of a biodegradable substance, for example a lactic acid derivative (lactate). The matrix, due to stiffness requirements, it made as a relatively thick fabric. The matrix is coated with cement on which adhesion of the cells is enabled, for example, with polylysine. The cells are applied to this coated surface and are multiplied and differentiated in a perfusion chamber so that special properties can be formed.
This known process can be used to produce pieces of natural cartilage and bone. However, the production of pieces of tissue with a surface of a certain shape, such as a concave or convex surface with a given gradient, is not possible with this known process.
It is also a disadvantage of the known process, that substances, which can damage the cells or tissue, are re released from the lactate matrix. This matrix is necessary for reasons of stability.
the object of the present invention is the provision of a process for which the production of a natural implant is possible. This process does not require a lactate or polylactate matrix and allows for the production of surface shape.
SUMMARY OF THE INVENTION
In the process as claimed in the invention, a thin, membrane-like cell base is used as a support for the cells and does not form a three-dimensional skeleton in which the cells can be placed. the cell base can be a pattern of a body-compatible or biodegradable film, or flat material from the body, for example periosteum or perichondrium. In the process as claimed in the invention, a fabric-like or tissue-like structure which forms a three-dimensional skeleton for the cells and in which the cells can nest, is not necessary as the cell base. To enable three-dimensional multiplication of the cells, the cells, applied to the cell base, are coated with a material which corresponds to the material which enables healing of wounds in a human or animal body. For example, natural blood coagulate and/or a material which corresponds to natural blood coagulate and/or a fibrin cement and/or a collagen is suitable as this contact material. It is also possible to mix, or polymerize, the cells before application to the cell base with the material used for the coating and to then apply this mixture to the cell bases.
The coating then forms a skeleton in which the cells can multiply or spread three-dimensionally.
A thin cell base which does not exhibit mechanical stiffness or strength lies on the surface of a porous carrier. This surface is then shaped according to the surface desired for the implant, for example, concavely or convexly. The shape for the indicated surface can be determined diagnostically such that the indicated surface of the implant corresponds to the shape of the tissue in the area in which the implant is to be implanted.
With the process as claimed in the invention, natural implants for the most diverse tissues of the human or animal body, and also with the most varied functions, can be produced.
In the process as claimed in the invention, an exact surface shape for the produced implant can be achieved by shaping the porous carrier and the film-like cell base applied to this porous carrier. The shaping of the porous carrier can be done very exactly by removing and transferring the shape of a defective tissue region (for example, defective joint surface) with suitable technical aids in the required manner.
By means of the film-like cell base of the present invention, this surface shape is impressed on the cell formation which forms when the cells multiply, i.e. by means of the film-like cell base, the space for the three-dimensional multiplication of the cells is limited. A three-dimensional cell carrier is not needed in the invention, rather the material which promotes or enables healing in natural tissue offers the possibility of three-dimensional spreading or multiplication of cells.
The implant produced with the invention, on one side, has a boundary layer with a specific shape. Opposite this boundary layer, a cell structure is obtained which after implantation enables the implant to make contact with the existing natural tissue. By the coating of the cells applied to the cell bases, or by mixing these cells with the material which promotes or enables natural healing, the cells are caused during reproduction to form mortising surfaces on the implant side opposite the cell base, i.e. the aforementioned cell structures, with the possibility of making especially intensive contact with existing tissue so that after implantation rapid and uncomplicated growth of the implant into the natural tissue is ensured.


REFERENCES:
patent: 5316945 (1994-05-01), Minuth
patent: 5842477 (1998-12-01), Naughton et al.
patent: 0 739 631 (1996-04-01), None
patent: WO 94/20151 (1994-09-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing a natural implant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing a natural implant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing a natural implant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2594295

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.