Process for producing 3,4-dihydroxy-3-cyclobutene-1,2-dione

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S348000

Reexamination Certificate

active

06331653

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method for manufacturing 3,4-dihydroxy-3-cyclobutene-1,2-dione easily and efficiently.
BACKGROUND ART
3,4-Dihydroxy-3-cyclobutene-1,2-dione (usual name: “squaric acid”) is known as a useful starting material for pharmaceuticals, in addition to functional materials such as photosensitive materials for electrophotography, medium material for optical discs, optical sensitizers, and the like [Chemical Reviews, 93, 449, (1993); Japanese Patent Application, First Publication Laid Open No. Hei 4-106400; Japanese Patent Application, First Publication Laid Open No. Hei 2-306247; Japanese Patent Application, First Publication Laid Open No. Hei 2-48665; Japanese Patent Application, First Publication Laid Open No. Hei 5-5005; Japanese Patent Application, First Publication Laid Open No. Hei 5-96173; and the like].
Hitherto, several methods for manufacturing 3,4-dihydroxy-3-cyclobutene-1,2-dione are known. However, all known methods have problems such as need for many steps, difficulty in synthesizing starting materials, hard reaction conditions, low yields, requirements for special manufacturing equipment, and the like.
Examples of the known methods include (1) a method using a triketene as a starting material (disclosed in Jackson, B. et. al., EP442431, and the like); (2) a method using 4-hydroxy-3-cyclobutene-1,2-dione as a starting material [disclosed in Bellus, D. et. al., Helv. Chim. Acta, 61, 1784 (1978)]; (3) a method using a tetraalkoxyethylene as a starting material [disclosed in Bellus, D., J. Org. Chem., 44, 1208 (1979)]; (4) a method using a dialkoxyacetylcne as a starting material [disclosed in Pericas, M. A., Tetrahedron Letters, 4437 (1977)]; (5) a method using a tetrahalogenoethylene as a starting material [disclosed in J. Amer. Chem. Soc., 81, 3480 (1959), and the like]; (6) a method using hexachlorobutadiene as a starting material (disclosed in Hagenberg, P. et. al., Ger. Offen, No. 1568291, and the like); (7) a method using carbon monoxide as a starting material [disclosed in Silvestri, G. et. al., Electrochim. Acta, 23, 413 (1978)]; and the like.
However, each of the aforementioned methods has the following problems. That is, according to the method (1), it is difficult to obtain a large amount of the starting material since a triketene is a side product in the production of a diketene. According to the method (2), the method for acquiring the starting material is a solid culturing method with poor productivity or a synthetic method requiring many steps. The method (3) has a difficulty in synthesizing the starting materials, in addition to a low yield. The method (4) has a difficulty in synthesizing the starting materials. The method (5) has a difficulty in synthesizing the starting materials, in addition to requiring many steps. The method (6) provides a low yield. The method (7) requires special manufacturing equipment.
Further, in Liebigs Ann. Chem., 686, 55 (1965), a method for manufacturing 3,4-dihydroxy-3-cyclobutene-1,2-dione from 1,1,2,3,4,4-hexachloro- 1,3-butadiene is disclosed. However, this method provides a low yield of the desired final product.
In addition, in J. Amer. Chem. Soc., 84, 2919 (1962), a method for manufacturing 3,4-dihydroxy-3-cyclobutene- 1,2-dione via 2-chloro-3-ethoxy-4,4-difluolo-2-cyclobutene-1-one is disclosed. However, this method has problems such as a low yield in the synthesis of the starting material, 1-chloro-2,4,4-triethoxy-3,3-difluolocyclobutene, and a low yield of the desired final product.
Additionally, a method for manufacturing a 3-alkoxy-2-halogcnocyclobutanone derivative, which is used as an intermediate in producing 3,4-dihydroxy-3-cyclobutcne-1,2-dione in the present invention, is disclosed in Abramova, N. M. et. al., Izv. Akad. Nauk SSSR, Scr. Khim., 2, 439 (1981). However, the yield of the desired product according to this method is as low as 35%, which is unsatisfactory for a practical use.
The object of the present invention is to provide a method for manufacturing 3,4-dihydroxy-3-cyclobutcne-1,2-dione, easily and efficiently.
DISCLOSURE OF THE INVENTION
The present invention provides a method for manufacturing 3,4-dihydroxy-3-cyclobutene-1,2-dione represented by the following general formula (III), characterized in that a 3-alkoxy-2,2,4,4-tetrahalogcenocyclobutanone derivative represented by the following general formula (I) is treated in the presence of an agent for dehydrohalogenation, to yield a 3-alkoxy-2,4,4-trihalogceno-2-cyclobutene-1-one derivative represented by the following general formula (II), and then the 3-alkoxy-2,4,4-trihalogeno-2-cyclobutene-1-one derivative is further hydrolyzed.
[wherein, R
1
represents an alkyl group; and R
2
, R
3
and X are the same or different and each represents halogen]
[wherein, R
1
, R
2
, R
3
and X have the same meanings as described above]
The 3-alkoxy-2,2,4,4-tetrahalogenocyclobutanone derivative represented by the aforementioned general formula (I) can be obtained by means of reacting a 3-alkoxy-2-halogenocyclobutanone derivative represented by the following general formula (IV) with a halogenating agent.
[wherein, R
1
and R
2
have the same meanings as described above]
Additionally, the 3-alkoxy-2-halogenocyclobutanone derivative represented by the aforementioned general formula (IV) can be obtained by means of reacting a vinyl ether represented by the following general formula (V) with a halogenoacetyl halide represented by the following gcneral formula (VI) in the presence of an amine compound with a pKa value of approximately 6.0~8.0 (in an aqueous solution at 25° C.).
[wherein, R
1
represents an alkyl group]
[wherein, R
2
and R
4
are the same or different and each represents halogen]
In other words, a vinyl ether represented by the aforementioned general formula (V) is reacted with a halogenoacetyl halide represented by the aforementioned general formula (VI) in the presence of an amine compound with a pKa value of approximately 6.0~8.0 (in an aqueous solution at 25° C.), to yield a 3-alkoxy-2-halogenocyclobutanone derivative represented by the aforementioned general formula (IV). The resultant derivative is further reacted with a halogenating agent, to yield a 3-alkoxy-2,2,4,4-tetrahalogenocyclobutanone derivative represented by the aforementioned general formula (I). The resultant derivative is treated in the presence of an agent for dehydrohalogenation to yield a 3-alkoxy-2,4,4-trihalogceno-2-cyclobutene-1-one derivative represented by the aforementioned general formula (II), and then the 3-alkoxy-2,4,4-trihalogeno-2-cyclobutene-1-one derivative is further hydrolyzed to yield 3,4-dihydroxy-3-cyclobutene-1,2-dione represented by the aforementioned general formula (III).
Furthermore, at least one compound selected from the group consisting of N-methylmorpholine, N-ethylmorpholine, N,N-diethylaniline, and 2,4,6-trimethylpyridine is preferably used as the aforementioned amine compound with a pKa value of approximately 6.0~8.0 (in an aqueous solution at 25° C.).
BEST MODES OF CARRYING OUT THE INVENTION
In the definition of each group of the aforementioned general formulae (I), (II), (IV), (V), and (VI), the alkyl group represents a straight- or branched-chain alkyl group having 1~18 carbons, examples of which may include a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isoamyl group, neopentyl group, 2-pentyl group, 3-pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, pentadecyl group, octadecyl group, and the like. The halogcn represents an atom of fluorine, chlorine, bromine, iodine, or the like.
In the following, the manufacturing method of the present invention is described.
The compound represented by the general formula (III) (hereinafter, referred to as the compound (III); the compounds represented by the other general formula numbers are

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing 3,4-dihydroxy-3-cyclobutene-1,2-dione does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing 3,4-dihydroxy-3-cyclobutene-1,2-dione, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing 3,4-dihydroxy-3-cyclobutene-1,2-dione will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2589134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.