Process for preparing thermoplastic molding compositions

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S318000, C525S215000, C525S235000, C525S308000

Reexamination Certificate

active

06316550

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the preparation and processing of thermoplastic compositions based on vinyl chloride polymers with excellent notched impact strengths. The modification for notched impact strength uses a shell-type graft copolymer which is low in rubber and is added as a polymer latex prior to or during the polymerization of the vinyl chloride, whereupon the polyvinyl chloride (PVC) produced grafts onto the modifier latex particles. The component which improves impact strength is composed of a hard core and of a soft, rubber-like shell.
2. Discussion of the Background
The good price-performance ratio of polyvinyl chloride (PVC) and its versatility in use make it one of the most widely used polymers. However, PVC on its own is too brittle for many applications, e.g. window profiles. To improve the impact strength of PVC, vinyl chloride polymers have in the past been provided with a wide variety of modifiers. Examples of these which may be mentioned are polymeric impact modifiers of butadiene type, such as acrylonitrile-butadiene-styrene (ABS) and methyl methacrylatebutadiene-styrene (MBS); copolymers of ethylene with vinyl acetate (EVA); chlorinated polyolefins, such as chlorinated polyethylene (CPE); ethylenepropylene rubbers and polymers of acrylate type, such as homo- and copolymers of alkyl acrylates. The application DE 1,082,734, for example, describes a process for preparing impact-modified polyvinyl chloride. The polymer claimed is prepared by polymerizing vinyl chloride in aqueous suspension with the aid of suspension stabilizers and of organic or, respectively, inorganic activators, and the polymerization of the vinyl chloride takes place in the presence of aqueous emulsions, of polymers which have tough and resilient properties at room temperature and are present in amounts of from 2 to 25% by weight, based on solids. The polymers here may be homopolymers of acrylic or vinylic esters or, respectively, copolymers with other compounds.
A disadvantage of this process is that to produce profiles a very large amount of the expensive acrylate is required to achieve sufficiently high notched impact strength in, for example, a PVC profile.
Grafted or core-shell impact modifiers with a layer-like structure are also known in principle. DE 4,302,552 describes graft and core-shell copolymers with improved phase compatibility between graft base and the polymer phase grafted on. The graft and core-shell copolymers are prepared from a polymer phase a) containing peroxy groups and comprising from 0.01 to 20% by weight of a doubly olefinically unsaturated peroxy compound of the formula H
2
C═CH—O—CO—R
1
—CO—O—O—CO—R
1
—COO—CH═CH
2
and contains from 80 to 99.99% by weight of one or more comonomers selected from the group consisting of (meth)acrylates of alcohols having from 1 to 10 carbon atoms, vinyl esters of saturated aliphatic carboxylic acids having from 2 to 10 carbon atoms, olefins, vinylaromatics, vinyl halides and/or vinyl ethers, and from, grafted onto this, a polymer phase b) which is prepared by grafting one or more comonomers selected from the group consisting of (meth)acrylates of alcohols having from 1 to 10 carbon atoms, vinyl esters of saturated aliphatic carboxylic acids having from 2 to 10 carbon atoms, olefins, vinylaromatics, vinyl halides and styrene, and also styrene derivatives, onto the polymer phase a) containing peroxy groups. A disadvantage of this process for preparing core-shell polymers is that concomitant use of an unstable comonomer containing peroxy groups is required in order to ensure phase compatibility between polymer phases a) and b), and care has to be taken that the peroxide functions are not destroyed. The text also describes the use as an impact modifier in plastics, albeit in solid form. This, however, is another disadvantage since it necessitates an additional work-up process, namely drying. The shell is moreover used in uncrosslinked form, and this results in some shearing away of the shell polymer during processing and is highly disadvantageous.
EP 0,600,478 also describes the preparation of a graft copolymer latex from core-shell dispersion particles with improved phase compatibility between core and shell, using a two-stage emulsion polymerization process. However, only crosslinked, elastomeric polymers are permissible in the first stage. In addition, the shell polymer has to have a glass transition temperature (T
g
) above 20° C., and this would have an adverse effect for the use as impact modifier in thermoplastics.
There are also known core-shell modifiers for improving the notched impact strength of PVC, which have a hard core and a soft shell made from rubber-like material. For example U.S. Pat. No. 3,763,279 and DE 3,539,414 describe the preparation of polymer systems which have a hard, crosslinked core made from polystyrene and a soft, crosslinked polyacrylate shell. Disadvantages are firstly the relatively poor compatibility of the polystyrene core with the PVC matrix, the effect of which is especially adverse when welding PVC profiles which have been cut to the required dimensions. Secondly, these processes were optimized for transparency, and polystyrene therefore had to be used as core material. This is uneconomic, however, when transparency is not needed in the resultant semifinished product.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to develop a process which avoids the above-mentioned disadvantages.
This and other objects have been achieved by the present invention, the first embodiment of which provides a process, which includes:
graft polymerizing a vinyl chloride monomer in suspension in the presence of a core-shell impact modifier;
wherein the core-shell impact modifier includes:
a core including polyvinyl chloride or vinyl chloride copolymers; and
a shell including crosslinked alkyl (meth)acrylate homo- or copolymers.
Another embodiment of the present invention provides a thermoplastic polyvinyl chloride molding composition modified with an elastomer-containing core-shell modifier, prepared by a process, which includes:
graft polymerizing a vinyl chloride monomer in suspension in the presence of a core-shell impact modifier;
wherein the core-shell impact modifier includes:
a core including polyvinyl chloride or vinyl chloride copolymers; and
a shell including crosslinked alkyl (meth)acrylate homo- or copolymers.
Another embodiment of the present invention provides a plastic profile, which includes the above-noted composition.
Another embodiment of the present invention provides an article selected from the group including window frame, pipe, film, siding and panel, which includes the above-noted composition.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Various other objects, features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description of the preferred embodiments of the invention.
Surprisingly, it has now been found that improved properties can be achieved in impact-modified PVC by way of a reduced elastomer proportion in the impact modifier, which is prepared by way of a core-shell structure by replacing some of the rubber phase with a core made from cost-effective PVC.
The invention provides a novel process for preparing a thermoplastic polyvinyl chloride molding composition modified with an elastomer-containing core-shell modifier with improved impact strength and corner strength and with improved optical properties, such as surface gloss, and with, at the same time, a smaller proportion of the elastomer component than in conventional single-phase impact modifiers.
The core of the impact modifier is composed of polyvinyl chloride or of vinyl chloride copolymers, and the shell of the impact modifier is composed of crosslinked alkyl (meth)acrylate homo- or copolymers. The graft polymerization of the vinyl chloride monomer takes place by suspension polymerization processes known to the chemist and the engineer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing thermoplastic molding compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing thermoplastic molding compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing thermoplastic molding compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588348

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.