Organic compounds -- part of the class 532-570 series – Organic compounds – Unsubstituted hydrocarbyl chain between the ring and the -c-...
Reexamination Certificate
2000-01-10
2002-05-21
Raymond, Richard L. (Department: 1624)
Organic compounds -- part of the class 532-570 series
Organic compounds
Unsubstituted hydrocarbyl chain between the ring and the -c-...
C540S581000
Reexamination Certificate
active
06392038
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a process for the preparation of substantially single enantiomer narwedine, or derivatives thereof, by a dynamic entrainment whereby racemic narwedine is seeded with its single enantiomer under dynamic conditions which do not require the presence of an added amine base, enabling production of single enantiomer of high purity and improved configurational stability.
BACKGROUND TO THE INVENTION
(−)-Galanthamine is an alkaloid obtained from daffodils, and is under evaluation as a drug for the treatment of Alzheimer's disease. Synthetic methods for the preparation of galanthamine are therefore valuable, especially methods which lead to the desired single enantiomer, (−)-galanthamine. The production of high purity pharmaceutical grade (−)-galanthamine can be achieved by reduction of (−)-narwedine, and hence the purity of the (−)-narwedine or related precursor is also of importance.
In the first reported chemical synthesis of (−)-galanthamine [Barton and Kirby, J. Chem. Soc., 806, 1962] the key synthetic intermediate was racemic narwedine, although this was obtained in only very low yield (1.4%). Subsequently racemic narwedine was converted to (−)-narwedine by a method which was essentially a dynamic crystallisation process. Here crystallisation of (−)-narwedine was induced by addition of (+)-galanthamine, whilst a dynamic in situ racemisation enabled all the racemic material to be converted over to a single enantiomer. This essential in situ racemisation was found by Barton to be base-catalysed, and Barton employed the amine triethylamine as added base so as to facilitate this racemisation.
More recently, in an extension of Barton's work, a method has been developed in which racemic narwedine is resolved by seeding a supersaturated solution thereof in a solvent/amine base mixture with (−)-narwedine. The amine base is selected from pyridine or a trialkylamine, and the ratio solvent:base is from 1:9 to 15:1, most preferably about 9:1 [see Shieh and Carlson, J. Org. Chem., 59, 5463, 1994; WO 95/27715]. Again, the amine base is used to facilitate the vital in situ racemisation process.
Although an amine base such as triethylamine is useful in promoting in situ racemisation in the resolution process, this very property raises a number of problems which become prominant in large scale work. The most detrimental effect is that residual base becomes incorporated into the crystalline product, and the single enantiomer material prepared in this way does not remain enantiomerically-pure in the solid state, but undergoes slow racemisation upon storage. An added detrimental consequence of this is that material obtained in this way eventually becomes unsuitable for seeding of subsequent resolutions. Furthermore, the filtration time for collection of the resolved (−)-narwedine may become significant, and prolonged exposure of resolved (−)-narwedine to base-containing mother liquors renders it prone to racemisation, resulting in material of lower enantiomeric purity.
SUMMARY OF THE INVENTION
Despite the aforementioned requirement for an added amine base in the dynamic resolution of narwedine, we have surprisingly discovered that the dynamic entrainment can be performed on a preparative scale without the need for an added amine base.
According to the present invention, a process for the preparation of substantially single enantiomer (−)-narwedine comprises seeding a solution of racemic narwedine dissolved in a solvent with substantially single enantiomer (−)-narwedine, provided that if an added amine base is present the ratio solvent:amine base is greater than 15:1.
The present invention has a distinct and important advantage over the previously reported entrainment methods since the single enantiomer narwedine thus obtained is configurationally stable to racemisation in the solid state, due to the presence of substantially no added amine base. This, consequently, has advantages for large scale resolution work. The narwedine obtained is also of very high chemical purity, being free from exogenous organic amines, and moreover is in substantially single enantiomer form.
DESCRIPTION OF THE INVENTION
In the context of this Application, by substantially single enantiomer typically we mean an enantiomeric excess of at least 80% or higher, preferably at least 90%, more preferably higher. In fact, the process of the invention is capable of consistently achieving enantiomeric excesses of higher than 98%, and even higher than 99%.
By added amine base we mean amine base other than, or additional to, narwedine, such as pyridine or a trialkylamine, as used in prior art processes.
The dynamic entrainment process of the present invention comprises seeding a solution of racemic narwedine with (−)-narwedine. The dynamic entrainment may be carried out in an aqueous or alcoholic solvent, for example water, methanol, ethanol, isopropanol, n-propanol, especially ethanol, or any mixture of these solvents, preferably alcohol/water mixtures and more preferably an ethanol/water or methanol/water mixture.
Addition of a small amount of an amine base other than narwedine can be tolerated, provided that no detrimental effect is observed in the final product. For instance, the ratio of solvent: added amine base should be greater than 15:1, and preferably at least 20:1, by volume. Preferably, however, the process is carried out substantially, if not totally, in the absence of added amine base, for instance with the solvent: added amine base ratio being at least 30:1, preferably at least 40:1, and typically higher, eg. at least 50:1.
Once the racemic narwedine has been dissolved in an appropriate solvent, the narwedine solution is typically maintained at a temperature of between 40° C. and the reflux temperature of the mixture, preferably from around 60 to 100° C. The solution is then seeded with single enantiomer (−)-narwedine, typically from 1% to 30% by weight with respect to racemic narwedine, preferably from 5% to 15% by weight, and more preferably approximately 10% by weight, and then the solution allowed to cool to approximately 40° C., after which crystals of substantially single enantiomer (−)-narwedine are collected by filtration.
REFERENCES:
patent: 5428159 (1995-06-01), Shieh et al.
patent: 6043359 (2000-03-01), Crollner et al.
patent: WO-96/12692 (1996-05-01), None
Barton, D.H.R. et al, J. Chem. Soc., 1962, 806-817.*
Wen-Chung, Shied (1994) “Asymmetric Transformation of Either Enantiomer of Narwedine via Total Spontaneous Resolution Process, a Concise Solution to the Synthesis of (−)-Galanthamine”Journal of Organic Chemistry59(18):5463-5465.
Potter Gerard Andrew
Tiffin Peter David
Janssen Pharmaceutica N.V.
McKenzie Thomas C
Raymond Richard L.
Saliwanchik Lloyd & Saliwanchik
LandOfFree
Process for preparing single enantiomer narwedine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for preparing single enantiomer narwedine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing single enantiomer narwedine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2894467