Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Food or edible as carrier for pharmaceutical
Utility Patent
1994-10-14
2001-01-02
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Food or edible as carrier for pharmaceutical
C424S438000, C424S400000
Utility Patent
active
06168803
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a process of preparing rigid feedblocks of animal feed supplements. Such feedblocks supplement the daily diet of animals with scarce nutrients and/or vitamins or medicaments required by the animal.
Feedblocks produced by the process of this invention have a lower moisture content than the feedblocks of the prior art. In addition, the process of this invention permits the incorporation of a greater percentage of dry components and a smaller percentage of alkaline earth oxides into the feedblock. As a result, feedblocks produced by the process of this invention are less expensive than feedblocks made by the processes of the prior art.
2. Description of the Prior Art
Dietary supplements, in the form of solid feedblocks, have been recognized for many years as a vehicle to provide energy, protein, minerals, and vitamins to livestock. The use of such supplements is often attributed to the fact that pastures are deficient in such materials. In addition, solid feedblocks also are used to provide certain medicaments to animals.
The market for feedblocks designed to supplement protein and energy to livestock started to evolve during the mid 1960's. Typical formulations consisted of dried molasses, urea, oil seed meal, minerals, and vitamins. Such products were well accepted by small hobby cattlemen since they did not require a feeder or other equipment. In addition, daily supplementation was not required.
During the mid 1970's, chemical processes of preparing such dietary feedblocks started to proliferate. Blocks of up to 500 lb. weight could be produced from such processes. To date, all of the processes of the prior art involve a step of solidifying liquid products. In particular, such processes require a step of pouring liquid materials into molds and then subjecting the “poured-blocks” to a curing mechanism.
Generally, methods of manufacturing animal feedblocks can be divided into two basic categories. The first involves the production of feedblocks from extreme physical compression of materials. Exemplary of such processes are those described in U.S. Pat. Nos. 3,532,503, 3,500,795, 3,476,565, 3,246,366, and 2,924,522. Such processes are limited since they are unsuitable for the production of large size feedblocks. The maximum size feedblock which can be obtained by use of such processes is about 33.33 lbs. In addition, these processes exhibit low inclusion rates for nutritive liquids.
The second category is drawn to blocks formed by the reaction of metal oxides, such as calcium and magnesium oxide, and water bearing nutrient media, such as molasses, and a variety of other agents. Included within this second category are
(1) reactions between sugar solutions, soluble phosphorus sources and metal alkalis, such as those disclosed in U.S. Pat. Nos. 4,027,043, 4,160,041, 4,221,818, and 4,431,675;
(2) formation of blocks by mixing under shearing conditions molasses, water, water absorbent clays, magnesium oxide, a water soluble phosphorus source, and animal fat (and optionally a ferrous sulfate). See, for instance, U.S. Pat. Nos. 4,016,296, 4,171,385, 4,171,386 and 4,265,916;
(3) formation of a semi-rigid form containing heated molasses, magnesium oxide and dicalcium phosphate. Such formations are disclosed in U.S. Pat. Nos. 4,005,192 and 4,234,608;
(4) use of condensed vegetable solubles, such as a nutritive binder, corn steep liquor concentrate, vegetable seed meal, and salt. See, for instance, U.S. Pat. No. 4,349,578; and
(5) molasses based formulae comprising molasses, a trivalent salt of iron, aluminum or chromium, and magnesium oxide as the setting agent. Such formulae are disclosed in U.S. Pat. No. 4,851,244.
The processes of the second category all share a common drawback—they require a step of solidifying liquid products. As a result, it is not possible to use dry ingredients at maximum levels.
SUMMARY OF THE INVENTION
The invention is drawn to an economical process of preparing animal feedblocks and requires minimal physical compression. The process consists of adding an aqueous feed mixture containing an edible source of either sulfur or phosphorus to solid components comprising dry or semi-moist nutritive ingredients and at least one alkaline earth metal oxide. The resulting uniform mixture is an amorphous mass which is non-pumpable and non-flowable, but yet is formable. The mixture has the consistency of a paste. The mixture is transferred to a mold and subjected to compression prior to a relatively short curing stage. The resulting hardened feedblock contains less moisture than the feedblocks of the prior art.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention is drawn to a process for preparing rigid animal feedblocks for use as dietary feed supplements. The process is particularly useful for the production of feedblocks for ruminant livestock. The process does not require the formation of a “pourable mixture” and thus avoids the need to pump the material mix prior to block formation. Since the process does not require the composite to be pumpable, lower levels of alkaline earth metal oxides (the more expensive chemical reactants of feedblocks) may be employed. As such, the process of this invention minimizes inclusion rates of alkaline earth oxides.
Further, the process provides for the use of zeolite as a nutritional and hardening agent. In addition, zeolite serves to regulate the release of nitrogen from non-protein sources in ruminant feeding and from animal excrement. Further, it reduces the odor and loss of ammonia which occurs during manufacturing as well as rumen sulfide and sulfate levels.
The process consists of the following five steps:
Step (a)—mixing liquid nutritive component(s) and a water soluble and edible source of either sulfur or phosphorus to render a sulfate or phosphate nutritive aqueous feed mixture;
Step (b)—mixing the aqueous feed mixture with dry to semi-moist nutritive ingredients and at least one alkaline earth metal oxide until a substantially uniform mixture is obtained;
Step (c)—transferring the substantially uniform mixture into a receiver;
Step (d)—expelling air entrained in the mixture by compression; and
Step (e)—curing the compressed feedblock.
The process requires only moderate physical compression over a short period after transfer of the substantially uniform mixture to the receiver. Typically, the pressure applied should be between about 60 and about 150 pounds per square inch of surface area for one to ten seconds.
Feedblocks made by the process of this invention characteristically exhibit a lower moisture content than commercially available feedblocks. The moisture content of the feedblock can be readily determined by following equation (I):
wt
⁢
⁢
of
⁢
⁢
feedstock
⁢
⁢
before
⁢
⁢
drying
-
wt
.
⁢
of
⁢
⁢
feedstock
⁢
⁢
after
⁢
⁢
drying
wt
.
⁢
of
⁢
⁢
feedstock
⁢
⁢
before
⁢
⁢
drying
(
I
)
In addition, the process of this invention permits the formation of feedblocks from components having a summation moisture index of between about 17 to about 22 weight percent. Summation moisture index is defined as the sum of the “products” of the moisture indices of each of the components of the animal feedblock prior to curing times the percentage inclusion rate. It is normally obtained by totaling the moisture indices of each of the components prior to the start of the initial step of the process. The summation moisture index of commercially available feedblocks is typically between about 25 to about 30 weight percent. The moisture index for each of the components of the feedblock may be determined in accordance with methods 934.01, 930.15 or 966.20, as published by the Association of Official Analytical Chemist.
In addition, the moisture content of the feedblock made by the process of this invention is less than the summation moisture index. The differences in the moisture content of the feedblock versus t
Eng, Jr. Kenneth
Harris Joseph M.
Crutsinger & Booth
Page Thurman K.
Westway Trading Corporation
LandOfFree
Process for preparing rigid animal feedblocks does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for preparing rigid animal feedblocks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing rigid animal feedblocks will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2525914