Compositions: coating or plastic – Coating or plastic compositions – Bituminous material or tarry residue
Reexamination Certificate
2003-01-24
2004-01-20
Brunsman, David (Department: 1755)
Compositions: coating or plastic
Coating or plastic compositions
Bituminous material or tarry residue
Reexamination Certificate
active
06679941
ABSTRACT:
The present invention relates to a process for preparing products containing mineral particles and asphaltenes-containing binder.
BACKGROUND OF THE INVENTION
Bitumen is well known for use as binder for mineral particles. Typically, bitumens contain 5% to 25% by weight of asphaltenes (page 90 of The Shell Bitumen Handbook, September 1991). Generally, bitumen based products are prepared by mixing fluid hot bitumen with hot aggregate (pages 189-196 of The Shell Bitumen Handbook, September 1991). The fluid hot bitumen is usually obtained in the refinery and subsequently transported as a hot fluid from the refinery to the mixing plant. In such a set-up, the bitumen is handled, transported and stored hot.
It has now been found possible to handle, store and transport asphaltenes-containing binder at ambient temperature.
Non-prepublished patent application PCT/EP00/00734 having international publication number WO 00/46164, describes construction elements comprising from 70 to 99% by weight of solid particles and from 30 to 1% by weight of a hydrocarbonaceous binder, which binder most preferably has a penetration of less than 10 dmm according to ASTM D 5 at 25° C. It is described that an advantageous method of preparing compositions or construction elements comprises using the hydrocarbonaceous binder in the form of binder-containing particles, more specifically in the form of binder containing granulate or powder. It has not been specified how to use the binder-containing particles.
SUMMARY OF THE INVENTION
The present invention relates to a process for preparing products containing mineral particles and asphaltenes-containing binder which process comprises (a) preparing a fluid mixture of mineral particles and asphaltenes-containing binder by mixing solid particles (i) containing from 10 to 95% by weight of asphaltenes-containing binder having a penetration of less than 15 dmm and from 90 to 5% by weight of small particles having an average particle size of less than 5 millimeter, with hot mineral particles (ii) having a temperature from 100 to 300° C., and (b) use of the fluid mixture for preparing products containing mineral particles and asphaltenes-containing binder.
The presence of asphaltenes is established by test method IP 143/96. The penetration is measured according to ASTM D 5 at 25° C.
The process of the present invention has the advantage that the binder can be handled, stored and transported at ambient temperature. It has been found that the combination of a hard binder and the presence of a substantial amount of small particles having an average particle size of less than 5 millimeter, can produce strong particles which tend not to stick together. Such strong, non-sticking solid particles (i) are easier to handle. Contrary to the hot fluid which is generally being used at present, the solid particles containing hard asphaltenes-containing binder and a substantial amount of small particles, can easily be transported over long distances and/or stored for a long time.
DETAILED DISCUSSION OF THE INVENTION
In the process of the present invention, the solid particles (i) contain from 10 to 95% by weight of asphaltenes-containing binder having a penetration of less than 15 dmm according to ASTM D 5 at 25° C. and from 90 to 5% by weight of small particles having an average particle size of less than 5 millimeter. The amounts are based on total amount of solid particles (i). The small particles are different from the asphaltenes-containing binder, and are solid at ambient temperature.
Although particles having a larger size can be present in the solid particles (i), at least 5% by weight of small particles having the required particles size should be present. Preferably, at least 5% by weight of small particles is present having an average particle size of less than 1 millimeter, more preferably at least 5% by weight of small particles having a particle size of at most 63 micrometer, so-called filler. The particle sizes are measured by sieving with sieves having openings of the indicated size. The amount of these small particles present in the solid particles (i) preferably is at least 10% by weight, more preferably at least 20% by weight, more preferably at least 30% by weight. The amount of these small particles present in the solid particles (i) is preferably at most 80% by weight, most preferably at most 70% by weight. Preferably, the solid particles (i) contain the asphaltenes-containing binder and the solid particles in a volume ratio from 5:1 to 1:5, more preferably 3:1 to 1:3.
If the fluid obtained in step (a) is to be used for preparing construction elements, it is particularly advantageous that the solid particles contain filler.
The quantity and quality of the filler determines to a large extent the properties of the final product obtained such as its tensile strength and its compression strength. In a preferred mode of operation, there is a wide range of solid particles (i) which are each to be combined with the same type or mix of mineral particles (ii). In this set-up, the desired final product can be prepared by choosing the right kind of solid particles (i) while the further features of the process, including the type or mix of mineral particles (ii), can remain unchanged. The properties of the final product obtained can be influenced by the binder and by the small particles present in the solid particles (i). This set-up is especially advantageous in the manufacture of construction elements, in which industry a wide range of similar products is produced. The use of tailored solid particles (i) makes it possible to produce a wide range of final products without the need to change the process other than using a different kind of solid particles (i). Such process comprises preparing different products containing mineral particles and asphaltenes-containing binder, by (a) mixing different solid particles (i) containing from 10 to 90% by weight of asphaltenes-containing binder having a penetration of less than 15 dmm and from 90 to 10% by weight of small particles having an average particle size of less than 5 millimeter, with the same kind of hot mineral particles (ii).
The small particles can be chosen from a wide range of materials. Preferred materials are coke and mineral particles such as clay, silt, cement and limestone. Further materials which may be employed as the small particles are powdered metal, powdered wood and crushed shells. The small particles preferably are mineral particles as mineral particles have a strong anti-sticking effect. It is thought that the mineral particles are preferentially present on the outer surface of the solid particles (i), which improves the anti-sticking effect of the small particles.
The suitable dimensions of the solid particles (i) depend on the conditions at which the solid particles are to be handled further. Heat transfer during mixing is better if the solid particles are small, which results in a shorter mixing time. Generally, it is preferred that the solid particles (i) have, on weight average, a weight of less than 500 grams, more preferably less than 200 grams. Most preferably, the solid particles have, on weight average, a weight of at most 100 grams.
The solid particles (i) may be in any convenient shape or form e.g. they may be in the form of pellets, bars, tubes or fibers.
The asphaltenes-containing binder can be any asphaltenes-containing binder. Preferably, the binder has a penetration of at most 10 dmm at 25° C., more preferably of less than 10 dmm and most preferably less than 8 dmm. Further, the binder preferably has a penetration of at least 0.1 dmm at 25° C., more preferably at least 1 dmm, more preferably at least 2 dmm.
The penetration values below 2 dmm can be measured by measuring at 40° C. and subsequently extrapolating the results.
The solid particles (i) are solid at ambient temperature. The softening point of the binder present in the solid particles, determines at which temperature the solid particles (i) become fluid. The binder according to the present invention preferably has a softening p
Reynhout Marinus Johannes
Van Der Horst Willem
Brunsman David
Shell Oil Company
LandOfFree
Process for preparing products containing mineral particles... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for preparing products containing mineral particles..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing products containing mineral particles... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3238349