Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Removing only nonpolymerized or nonpolymerizable material...
Reexamination Certificate
2000-09-01
2002-10-01
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Removing only nonpolymerized or nonpolymerizable material...
C526S068000, C526S077000, C526S065000, C526S901000
Reexamination Certificate
active
06458900
ABSTRACT:
The present invention relates to the production of polyolefins. The invention relates in particular to a process according to the preamble of claim
1
for the production of polyolefins in a reactor system which comprises at least one gas-phase reactor wherein at least one monomer is polymerized. According to the process, hydrogen and possibly other gaseous or vaporized light components are separated from the fluid being directed to the gas-phase reactor.
The invention is applicable to the separation of light components from the stream between two polymerization reactors and to the removal of volatile (uncondensable) components from the circulation gas of a gas-phase reactor used for the preparation of polyolefins.
Olefins are polymerized into polyolefins in a gas-phase reactor in the presence of, for example, Ziegler-Natta type catalysts or metallocene catalysts. The forming polymer mass, which contains an active catalyst, is fluidized in :a fluidized bed reactor by using a hydrocarbon stream. This stream contains a monomer (typically ethylene or propylene) and possibly a comonomer (C
2
-C
10
olefins or diolefins, preferably ethylene, propylene, 1-butene or hexene), as well as hydrogen, which controls the molecular weight. The hydrocarbon stream may also contain high concentrations of a substance inert in the reaction (typically nitrogen or propane).
During the polymerization there is withdrawn from the gas-phase reactor a gas stream which contains at least some amount of unreacted monomer and which is returned to the gas-phase reactor as circulation gas. Most of the heat of reaction is removed by cooling this circulation gas. In order to ensure sufficient cooling efficiency and to achieve suitable fluidization velocities, the circulation gas stream is typically quite large. From the viewpoint of the functioning of the condenser it is preferable to remove from the stream the components with the lowest molecular weights, in particular hydrogen.
Nowadays hydrogen is removed from the gas-phase reactor either from the circulation gas stream or from the recovery stream together with the purge stream.
There are considerable disadvantages associated with prior art solutions. Thus the most typical method of lowering the concentration of hydrogen in the reactor is to increase the off-gas stream of accumulating inerts to a level close to the maximum capacity of the gas removal system. The gas removed is directed, for example, to the flare for burning or as feed to cracking. These methods are bad, expensive and slow, since both chemicals and production capacity are lost, which is due to the fact that a product of deficient quality is produced.
A further disadvantage of the prior art is that, when a typically relatively low concentration of hydrogen is lowered, the gases leaving together with the hydrogen cause a large financial loss to the polyolefin plant.
The accumulation of hydrogen and other light components in the gas streams of the polymerization process constitutes a problem also when polyolefins are prepared in a plant where two reactors are coupled together. Owing to the light components, such as hydrogen and inert compounds, present in the stream between the reactors, all products cannot be prepared by directing the mixture emerging from one reactor directly to the following gas-phase reactor. The reactor product is therefore directed to a product separator, where its pressure is lowered, whereupon the liquid possibly arriving together with the product vaporizes at least in part, or the gas expands and is recyclable to the first reactor. The pressure of the recycled stream is raised by using a compressor. Owing to the recycling, inert components tend to accumulate in the reactor.
In both of the cases mentioned above, particularly significant among the light components are hydrogen and lower alkanes, such as methane, ethane and propane, as well as nitrogen and other inert gases. Hydrogen is used for controlling the molar mass of the polymer, and the amount used varies according to the grade of the polymer. Reducing the proportion of hydrogen in the gas-phase reactor feed is important in situations in which it is desired to prepare long-chain polymers in a gas phase.
The object of the present invention is to eliminate the disadvantages of the prior art and to provide a novel process for the preparation of polyolefins in a reactor system having at least one gas-phase reactor.
The invention is based on the basic idea that hydrogen and possible other light components are separated by membrane separation from the fluid (liquid or gas stream) being fed into the gas-phase reactor, which fluid can comprise the circulation gas stream of the reactor or the effluent of the preceding reactor.
The use of membrane systems for the separation of hydrogen from process streams of polyolefin reactors is known per se from JP published application 08/151.413. In the said prior known process, gas to be separated under a high pressure from a gas-phase reactor is treated in a high-pressure membrane system to remove hydrogen, whereafter the gas stream is returned to the reactor.
The known technical solution has the disadvantage of a low degree of separation. Since the gas is separated under a high pressure, the polymer product will, even after the first separation step, contain volatile compounds, such as polymerization diluent and unreacted monomer, which have to be removed from the polymer separately. Also, no mention of the use of the process in connection with a grade change in the gas-phase reactor can be found in the publication, and evidently it is not applicable for this purpose, since in a separation carried out under a high pressure, relatively large amounts of monomer are left in the product polymer.
There are also other previously known membrane solutions. Thus, U.S. Pat. No. 4,740,550 describes a process for the preparation of a propylene-ethylene copolymer so that the propylene is first polymerized in two reactors and is then fed together with ethylene into a third reactor. According to the publication, hydrogen is removed from the circulation of the third reactor (i.e. the last gas-phase reactor) by using a hydrogen-selective hydrogen-removing membrane. In this known solution, the gas coming from the reactor and containing, for example, hydrogen, ethylene and propylene, is directed to a gas scrubber, to which ethylene and propylene which have condensed in the scrubber and have thereafter been cooled are recycled. The separation of the hydrogen-containing gas from the condensed components is thus based on the adding of cold liquid into the scrubber.
The present invention differs from the prior art in that the fluid to be fed into the gas-phase reactor is subjected, before being fed into the reactor, to a phase change in order to separate uncondensable compounds from liquid and possibly solid compounds. After at least a partial vaporization or condensation of the fluid, the gas made up of uncondensed and possibly vaporized compounds is recovered and; directed to membrane separation.
When it is desired to treat the stream between two reactors by using the option according to the invention, in accordance with prior art the product of the first reactor is directed to separation cyclones or corresponding apparatus for separating the reaction medium. According to the present invention, instead of vaporizing any possible liquid and directing it to a compressor, as in the prior art, a portion of the possible liquid is vaporized or the gas is allowed to expand in one or more steps, and the obtained gases are directed through a membrane system, whereby most of the hydrogen is removed. The hydrocarbons separated from the hydrogen are returned into the exit stream from the first reactor, and the said stream (fluid) is then fed into the gas-phase reactor. Thus it is possible to prepare from the effluent of the first reactor an intermediate product which can as such be fed into the second reactor (gas-phase reactor).
In the treatment of the circulation gas of the gas-phase reactor, there is withdrawn
Aittamaa Juhani
Järvelin Harri
Nyman Timo
Borealis Technology Oy
Cheung William K.
Wu David W.
LandOfFree
Process for preparing polyolefins does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for preparing polyolefins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing polyolefins will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2969590