Process for preparing ketone, alcohol and hydroperoxide

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S357000, C568S389000, C568S802000

Reexamination Certificate

active

06479705

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for preparing a ketone, an alcohol and a hydroperoxide. In particular, the present invention relates to a process for preparing a ketone, an alcohol and a hydroperoxide comprising allowing a hydrocarbon to be in contact with molecular oxygen to obtain a corresponding ketone, alcohol and/or hydroperoxide.
2. Background Art
Hitherto, it is known to obtain a ketone, an alcohol and/or a hydroperoxide by allowing a corresponding hydrocarbon to be in contact with molecular oxygen (hereinafter referred to as “oxygen” simply) to oxidize the hydrocarbon. For example, a process for preparing a KA oil (a mixture of cyclohexanone and cyclohexanol) by oxidizing cyclohexane with oxygen and a process for preparing a phenylalkyl hydroperoxide by oxidizing an alkylbenzene with oxygen are known.
In these years, a process has been developed, which comprises oxidizing a hydrocarbon with oxygen in the presence of a catalyst which comprises an imide compound such as N-hydroxyphthalimide, or a catalyst which comprises such an imide compound and a metal compound. For example, JP-A-8-38909 discloses a process comprising oxidizing various hydrocarbons with oxygen in an organic solvent using the above-described catalyst. JP-A-9-87215 discloses a process comprising oxidizing cyclohexane with passing an air or a mixture of nitrogen and oxygen using the above-described catalyst in the absence of a solvent.
However, the process disclosed in JP-A-8-38909 is not satisfactory, since their volume efficiency is low and thus the productivity is insufficient, and furthermore the safety of the process is not satisfactory, and the process disclosed in JP-A-9-87215 is not satisfactory either, since a reaction rate is low and thus the productivity is insufficient.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a process for preparing a ketone, an alcohol and/or a hydroperoxide with a high selectivity by oxidizing a corresponding hydrocarbon with oxygen, which is excellent in productivity and safety.
As a result of the extensive study by the inventors, it has been found that the above object can be achieved when a hydrocarbon is oxidized with oxygen in the presence of a cyclic N-hydroxyimide and a compound of a transition metal while supplying an oxygen-containing gas in a reaction system and discharging a gas having a specific oxygen concentration from the reaction system, and thus the present invention has been completed.
Accordingly, the present invention provides a process for preparing at least one compound selected from the group consisting of a ketone, an alcohol and a hydroperoxide comprising the step of reacting a hydrocarbon with molecular oxygen in the presence of a cyclic N-hydroxyimide and a compound of a transition metal, wherein an oxygen-containing gas is supplied in a reaction system and at the same time a gas containing about 1 to about 10% by volume of oxygen is discharged from the reaction system.
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, the ketone, alcohol and/or hydroperoxide are prepared by oxidizing the hydrocarbon with molecular oxygen in the presence of the cyclic N-hydroxyimide and the compound of the transition metal. In the course of the reaction, the oxygen-containing gas is supplied in the reaction system and at the same time the gas containing about 1 to about 10% by volume of oxygen is discharged from the reaction system.
Examples of the hydrocarbon used in the present invention include saturated alicyclic hydrocarbons (e.g. cyclopentane, cyclohexane, methylcyclohexane, adamantane, etc.), unsaturated alicyclic hydrocarbons (e.g. cyclopentene, cyclohexene, methylcyclohexene, cyclopentadiene, etc.), aromatic hydrocarbons (e.g. toluene, xylene, cumene, cymene, diisopropylbenzene, tetrahydronaphthalene (Tetraline), indane, etc.), and the like. Among them, the saturated alicyclic hydrocarbons are preferable.
As a result of the oxidation of the hydrocarbon, a compound corresponding to the hydrocarbon in which two hydrogen atoms of the methylene group are substituted with oxo groups is obtained as a ketone, a compound corresponding to the hydrocarbon in which a hydrogen atom of the methyl group, the methylene group or the metylidyne group is substituted with a hydroxyl group is obtained as an alcohol. Furthermore, a compound corresponding to the hydrocarbon in which a hydrogen atom of the methyl group, the methylene group or the metylidyne group is substituted with a hydroperoxy group as an hydroperoxide. For example, when a cycloalkane is used as the hydrocarbon, a cycloalkanone, a cycloalkanol and/or a cycloalkyl hydroperoxide can be obtained.
In the present invention, a combination of the cyclic N-hydroxyimide and the compound of the transition metal is used as a catalyst for the reaction of the hydrocarbon and oxygen.
Examples of the cyclic N-hydroxyimide include N-hydroxyphthalimide, N-hydroxynaphthalimide, N-hydroxymaleimide, N-hydroxysuccnineimide, whichmayhave a substituent, andthe like. Examples of the substituent include an alkyl group, an aryl group, a halogen atom, a nitro group, etc. Specific examples of the cyclic N-hycroxyimide include N-hydroxyphthalimide, N-hydroxychlorophthalimide, N-hydroxynitrophthalmimide, N-hydroxynaphthalimide, N-hydroxychloronaphthalimide, N-hydroxymaleimide, N-hydroxysuccnineimide, etc. The cyclic N-hydroxyimides may be used independently or as a mixture of two or more.
The amount of the cyclic N-hydroxyimide may be from 0.0001 to 20 mole %, preferably from 0.001 to 10 mole %, based on the hydrocarbon.
Examples of the transition metal contained in the compound of the transition metal include cerium, titanium, vanadium, chromium, molybdenum, manganese, iron, ruthenium, cobalt, rhodium, nickel, copper, etc. Among them, cobalt, cerium and manganese are preferable.
Examples of the compound of the transition metal include oxides, organic acid salts, inorganic acid salts, halides, alkoxides, complexes such as acetylacetonate, oxoacids and their salts, isopolyacids and their salts, heteropolyacids and their salts, etc. The transition metals may be used in combination of two or more of them.
The amount of the compound of the transition metal used may be from 0.00001 to 1 mole %, preferably from 0.0001 to 0.5 mole %, based on the hydrocarbon.
In the process of the present invention, the reaction may be carried out in the presence of a solvent. Examples of the solvent include nitriles (e.g. benzonitrile, acetonitrile, etc.), organic acids (e.g. formic acid, acetic acid, etc.), nitro compounds (e.g. nitromethane, nitrobenzene, etc.), chlorohydrocarbons (e.g. chlorobenzene, 1,2-dichloroethane, etc.), and mixtures thereof. When the solvent is used, an amount thereof may be at least about 0.01 part by weight, preferably at least about 0.05 part by weight, and may be about 4 parts by weight or less, preferably about 1.5 parts by weight or less, per one part by weight of the hydrocarbon.
In the process of the present invention, the oxygen-containing gas is supplied in the reaction system containing the hydrocarbon, the catalyst, the optional solvent, etc., and at the same time, the gas is discharged from the reaction system.
As the oxygen-containing gas supplied, oxygen gas, an air, or oxygen gas or an air, each of which is diluted with an inert gas such as nitrogen gas or helium gas may be used.
The concentration of the oxygen in the oxygen-containing gas may be at least 2% by volume, preferably at lest 5% by volume from the viewpoint of the reaction rate, and may not exceed 30% by volume, preferably 25% by volume from the viewpoint of the safety.
The supply rate of the oxygen-containing gas may be from 0.001 to 1 mole/hr., preferably from 0.01 to 0.5 mole/hr. in terms of the oxygen, per one mole of the hydrocarbon.
The oxygen-containing gas may be supplied in the reaction system such that the bubbles of the oxygen-containing gas are. dispersed in the mixture containing the hydrocarbon and the catalyst. The oxy

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing ketone, alcohol and hydroperoxide does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing ketone, alcohol and hydroperoxide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing ketone, alcohol and hydroperoxide will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2986877

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.