Process for preparing amides

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing nitrogen-containing organic compound

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S170000, C435S252100, C435S822000, C435S829000

Reexamination Certificate

active

06444451

ABSTRACT:

The invention relates to novel microorganisms of the genus Actinomadura, Amycolatopsis or Rhodococcus, and to a novel process for the preparation of amides using these microorganisms or using enzyme extracts of these microorganisms.
For amides such as, for example, nicotinamide, a vitamin of the vitamin B complex which is essential to animals and man, a number of biotechnological processes are already known. Generally, it is known that microorganisms containing nitrile hydratase convert nitriles to the corresponding amides. Thus EP-A-0 188 316 describes a process for the preparation of nicotinamide starting from 3-cyanopyridine using microorganisms of the genus Rhodococcus, Arthrobacter or Microbacterium.
A disadvantage of this process is that these microorganisms have only a low activity for the conversion of 3-cyanopyridine to nicotinamide.
EP-A-0 307 926 describes the conversion of 3-cyanopyridine to nicotinamide by means of microorganisms of the species
Rhodococcus rhodochrous
J1. In order that these microorganisms catalyse the desired conversion, they must be induced.
A further disadvantage of this process is that
Rhodococcus rhodochrous
J1 is red-coloured and accordingly a discoloration of the product takes place. In addition, this microorganism has a low heat stability and is inhibited, for example, by the substrate 3-cyanopyridine.
A further process for the preparation of nicotinamide starting from 3-cyanopyridine by means of microorganisms of the species
Rhodococcus rhodochrous
J1 is described in EP-A-0 362 829. In order to increase the specific activity of the microorganisms containing nitrile hydratase, urea or a urea derivative was added to the culturing medium as an inducer. As in the process described beforehand, a discoloration of the product also takes place in this process.
In addition, WO 95/17 505 describes a process for the preparation of aromatic amides starting from the corresponding nitriles by means of microorganisms of the species
Rhodococcus rhodochrous
M33. A disadvantage of this process is the red colouration of
Rhodococcus rhodochrous
M33 and also the high K
M
value for the substrate 3-cyanopyridine.
The object of the present invention was to eliminate these disadvantages and to make available a process for the preparation of amides in which the corresponding amides can be isolated in good yield and purity.
This object is achieved by the novel microorganisms according to claims
1
and
3
, and by the process according to claim
6
.
According to the invention, the process is carried out by converting a nitrile, as substrate, to the corresponding amide by means of microorganisms of the genus Actinomadura, Amycolatopsis or Rhodococcus, using an enzyme extract of these microorganisms or by means of purified nitrile hydratase of microorganisms of the genus Amycolatopsis or Actinomadura.
The nitriles employed for the biotransformation such as, for example, 3-cyanopyridine are commercially available compounds.
The microorganisms according to the invention are able to convert nitriles as substrates into the corresponding amides. Preferably, these microorganisms have the ability to grow on nitriles or amides as the sole C and/or N source.
The microorganisms according to the invention are obtainable by means of suitable selection, for example, from soil samples, sludge or waste water with the aid of customary microbiological techniques. Expediently, the microorganisms are selected by growth with nitriles or amides as the preferably sole C and N source in the presence of cobalt ions. Nitriles and amides suitable for selection are, in particular, the nitriles also employed as substrates in the later biotransformation and the corresponding amides obtainable therefrom. Suitable growth media are likewise known to the person skilled in the art, for example the medium described in Table 1 can be used.
Customarily, the microorganisms are cultured (grown) in the same manner even before the actual biotransformation, the abovementioned media being used.
As known professionally, a nitrile hydratase is only formed when the growth medium contains cobalt ions as a cofactor. Suitable “cobalt compounds generating cobalt ions” are Co
2+
or Co
3+
salts. Examples of Co
2+
and Co
3+
salts are cobalt chlorides, cobalt sulphates and cobalt acetates.
Expediently, the cobalt compound employed is a Co
2+
salt such as, for example, CoCl
2
. Growth, however, can also be carried out in the presence of vitamin B12 together with metallic cobalt or other cobalt compounds which generate a cobalt ion in situ. Expediently, the cobalt compound is employed in an amount from 1 to 10 mg/l, preferably from 1 to 3 mg/l.
Customarily, growth is carried out at a temperature from 20 to 50° C. and at a pH between pH 5 and pH 8, preferably from 30 to 45° C. and between pH 5.5 and pH 7.5.
The actual biotransformation can be carried out using microorganisms of the genus Actinomadura, Amycolatopsis, using an enzyme extract of these microorganisms or by means of purified nitrile hydratase from these microorganisms. Expediently, the biotransformation is carried out using microorganisms of the species
Actinomadura spadix,
for example the isolates
Actinomadura spadix
E3733,
Actinomadura spadix
E3736,
Actinomadura spadix
45A32,
Actinomadura spadix
4501 or
Actinomadura spadix
C15. The biotransformation is preferably carried out using microorganisms corresponding to the species Amycolatopsis NE 31 and Amycolatopsis NA40 or their functionally equivalent variants and mutants. Microorganisms corresponding to the species Amycolatopsis NA40 are particularly preferably employed. Microorganisms of the species mentioned were deposited on 03.06.1997 in the Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH [German Collection of Microorganisms and Cell Cultures GmbH], Mascheroderweg 1b, D-38124 Brunswick under the designations Amycolatopsis NE 31 and Amycolatopsis NA40 according to the Budapest Convention and have the deposit numbers DSMZ 11616 and DSMZ 11617 respectively. These two microorganisms have been more accurately identified and are to be assigned to species of the genus Amycolatopsis which have not yet been described in the literature.
Accordingly, the invention also relates to microorganisms of the genus Amycolatopsis or Actinomadura which are capable of converting an amide into a nitrile, in particular microorganisms with the designation Amycolatopsis NA40 (DSMZ 11617) and Amycolatopsis NE31 (DSMZ 11616).
In addition, it has been found that specific microorganisms of the genus Rhodococcus have better properties for the conversion of nitriles to amides than the
Rhodococcus rhodochrous
J1 described in EP-A-0 362 829. These microorganisms are Rhodococcus GF674, Rhodococcus GF578, Rhodococcus GF473, Rhodococcus GF270 (DSMZ 12211) and Rhodococcus GF376 (DSMZ 12175) or their functionally equivalent variants and mutants. The microorganism DSMZ 12175 was deposited on 15.5.1998 and the microorganism DSMZ 12211 on 8.6.1998 in the Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH [German Collection of Microorganisms and Cell Cultures GmbH] according to the Budapest Convention.
The Rhodococcus strains GF270, GF376, GF473, GF578 and GF674 have been assigned according to identification to species of the genus Rhodococcus which are not yet described in the literature. Accordingly, the invention also relates to the microorganisms Rhodococcus GF270, Rhodococcus GF376, Rhodococcus GF473, Rhodococcus GF578 and Rhodococcus GF674.
Unlike the microorganisms of the genus Actinomadura or Amycolatopsis, the microorganisms of the genus Rhodococcus are expediently induced before the actual conversion. Suitable inducers are those described in EP-A-0 307 926, such as, for example, acetamide, butyramide, methacrylamide, propionamide, crotonamide and valeramide.
“Functionally equivalent variants and mutants” is understood as meaning microorganisms which are derived from the abovementioned source organisms and essentially have the same characteris

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing amides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing amides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing amides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2863429

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.