Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2003-02-18
2004-02-24
Choi, Ling-Siu (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S348600, C526S307500, C526S348000, C502S156000, C502S154000
Reexamination Certificate
active
06696531
ABSTRACT:
The invention relates to a process for preparing a polymer by polymerizing a component containing 3,4-epoxy-1-butene in the presence of a double metal cyanide (DMC) catalyst and a hydroxy-functional starter.
BACKGROUND OF THE INVENTION
The polymerization and copolymerization of 3,4-epoxy-1-butene (EpB) is known. For example, U.S. Pat. No. 2,680,109 discloses the polymerization of unsaturated 1,2-epoxides, including 3,4-epoxy-1-butene, using as catalyst stannic chloride containing a small amount of water. British Patent 869,112 and U.S. Pat. Nos. 3,031,439 and 3,417,064 disclose the copolymerization of 3,4-epoxy-1-butene with ethylene oxide and propylene oxide, using as catalyst strontium carbonate containing a small amount of water.
U.S. Pat. No. 5,393,867 discloses polyether compounds obtained by the reaction or polymerization of 3,4-epoxy-1-butene in the presence of a palladium(O) catalyst and a nucleophilic initiator compound.
U.S. Pat. No. 5,466,759 describes polymers made by polymerizing 3,4-epoxy-1-butene in the presence of a catalytic amount of certain acidic compounds and a hydroxyl initiator compound. The acidic compounds may be selected from strong acids such as sulfuric acid; perchloric acid; fluoroboric acid; strongly acidic ion exchange resins, e.g., Amberlyst resins; and fluorosulfonic acids such as perfluoroalkanesulfonic acids containing up to about 6 carbon atoms, e.g., trifluoromethanesulfonic acid and fluorosulfonic acid and perfluorosulfonic acid polymers, e.g., Nafion resins, e.g., Nafion NR-50 acidic resin.
U.S. Pat. No. 5,466,759 also describes polymerizing 3,4-epoxy1-butene in the presence of a catalytic amount of a palladium(O) complex and a hydroxyl initiator compound. The palladium catalyst comprises palladium(O) in complex association with about 2 to 4 ligands, such as the catalysts disclosed in WO 89/02883. Suitable ligands include trihydrocarbyl phosphines and trihydrocarbylarsines, e.g., triphenylphosphine, tributylphosphine, trimethylphosphine, 1,2-bis(diphenylphosphino)ethane, triphenylarsine, tributylarsine, the trisodium salt of tri(m-sulfophenyl)phosphine, and the like.
U.S. Pat. No. 5,466,759 also describes polymerizing 3,4-epoxy-1-butene in the presence of a catalyst system comprising an onium iodide compound such as an ammonium or phosphonium iodide and an organotin compound such as a trihydrocarbyltin iodide. The onium iodide component of the catalyst system may be selected from a variety of tetra(hydrocarbyl)ammonium iodides and tetra(hydrocarbyl)phosphonium iodides, preferably having a total carbon atom content of about 16 to 72 carbon atoms. The teachings of this reference are incorporated in this application by reference.
The experience with palladium catalyst in the course of this work showed that the most effective catalyst was tetrakistriphenylphosphine palladium(0) whereas three supported palladium catalysts, 5% palladium on carbon, 10% palladium on alumina and 5% palladium on barium sulfate showed no polymerization even under more rigorous conditions such as high monomer concentration and reflux temperatures.
A variety of hydroxy functional starters were found to be suitable for initiation of EpB polymerization using the palladium catalyst. For the most part, difunctional initiators were used for the catalyst development work. However, when studies indicated monofunctional initiators were explored and, according to customer demand, trifunctional initiators were also utilized. Primary and secondary alcohols were equally suitable polymerization form 1- and 2-butanol yielded near-identical polyethers.
The Pd(0) catalyst is capable of producing expoxybutene homopolymers. The synthesis was generally conducted in 50% methylene chloride at −20 to +20° C. The low temperature and high solvent concentration were both necessary to accommodate the high exothermicity of the reaction. The degree of 1,2-versus 1,4-addition was found to be reaction temperature dependent. For example, at 20° C., the polymer contained up to 80% pendant double bonds while at 0° C. the value dropped to 4%. Due to this mixture of structural isomers, the polymers contained both primary and secondary terminal hydroxyl groups. The polymers were thermally stable up to ~300° C. and viscosities were generally 250-600 cP depending on molecular weight and functionality. Using BO as the second monomer, it was determined that the palladium catalyst will not copolymerize expoxybutene with other epoxides. It was an object of the present invention to provide an easy process to produce EpB homo- and copolymers and a good property spectrum for applications in the field of polyurethanes.
SUMMARY OF THE INVENTION
The invention relates to a process for preparing a polymer by polymerizing a component I. containing 3,4-epoxy-1-butene in the presence of II. a double metal cyanide (DMC) catalyst and III. a hydroxy-functional starter.
The invention also relates to a polymer obtained by that process.
The invention also relates to a process of forming a polyurethane bond in a reaction mixture comprising adding that polymer to the reaction mixture.
DETAILED DESCRIPTION OF THE INVENTION
The component I. can also contain other monomers that will copolymerize with EpB in the presence of a DMC compound in the process of the invention to make other types of polymers. Any of the copolymers known in the art made using conventional DMC catalysts can be made with the catalysts of the invention. For example, epoxides copolymerize with oxetanes (as described in U.S. Pat. Nos. 3,278,457 and 3,404,109) to give polyethers, or with anhydrides (U.S. Pat. Nos. 5,145,883 and 3,538,043) to give polyester or polyetherester polyols. The preparation of polyether, polyester, and polyetherester polyols using double metal cyanide catalysts is described, for example, in U.S. Pat. Nos. 5,223,583; 5,145,883; 4,472,560; 3,941,849; 3,900,518; 3,538,043; 3,404,109; 3,278,458 and 3,278,457, and in J. L. Schuchardt and S. D. Harper, SPI Proceedings, 32nd Annual Polyurethane Tech./Market. Conf. (1989) 360. The teachings of these references related to polyol synthesis using DMC catalysts are incorporated herein by reference in their entirety.
Preferred monomers are ethylene oxide, propylene oxide and mixtures thereof.
Double metal cyanide (DMC) complexes are well-known catalysts for epoxide polymerization. These active catalysts give polyether polyols that have low unsaturation compared with similar polyols made using basic (KOH) catalysis. The catalysts can be used to make many polymer products, including polyether, polyester, and polyetherester polyols. The polyols can be used in polyurethane coatings, elastomers, sealants, foams, and adhesives.
DMC catalysts are usually made by reacting aqueous solutions of metal salts and metal cyanide salts to form a precipitate of the DMC compound. A low molecular weight complexing agent, typically an ether or an alcohol is included in the catalyst preparation. The complexing agent is needed for favorable catalyst activity. Preparation of typical DMC catalysts is described, for example, in U.S. Pat. Nos. 3,427,256; 3,829,505 and 5,158,922.
Highly active DMC catalysts that include, in addition to a low molecular weight organic complexing agent, from about 5 to about 80 wt. % of a polyether having a molecular weight greater than about 500 are described in U.S. Pat. No. 5,482,908, hereby incorporated in this application by reference. Excellent results are obtained when the polyether component of the DMC catalyst is a polyoxypropylene polyol. Compared with earlier DMC catalysts, the polyether-containing DMC catalysts have excellent activity and give polyether polyols with very low unsaturation. In addition, polyether-containing DMC catalysts such as those described in U.S. Pat. No. 5,482,908 are easier to remove from the polyol products following epoxide polymerization.
The polyether-containing DMC catalysts are valuable because they give polyether polyols with low unsaturation, and they are active enough to allow their use at very low concentrations, often low enough to overcom
Greiving Helmut
Miller Peter J.
Bayer Polymers LLC
Choi Ling-Siu
Gil Joseph C.
Matz Gary F.
LandOfFree
Process for preparing a polymer from 3,4-epoxy-1-butene does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for preparing a polymer from 3,4-epoxy-1-butene, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing a polymer from 3,4-epoxy-1-butene will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3354564