Process for preparing a cosmetic formulation

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Cosmetic – antiperspirant – dentifrice

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S059000, C424S400000, C514S937000, C514S938000, C514S939000

Reexamination Certificate

active

06783766

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a process for preparing a cosmetic formulation. Historically, cosmetic formulations have been prepared by emulsifying an oil phase with an aqueous phase matrix using a batch process wherein the oil and water mixture is sheared in a large vessel. The oil phase typically includes a mixture of complex and varying oil-miscible ingredients and, consequently, batch-to-batch reproducibility of oil droplet size is often elusive. Moreover, processing time can be quite long and scale-up of the process from the benchtop to the manufacturing plant can be frustrating because tank-based processes often do not scale up in a linear fashion.
In WO 01/54663, Wilmott et al. discloses a possible solution to the problems associated with formulating personal care products by providing a substantially surfactant-free stable aqueous dispersion (that is, stable for at least two months), containing up to 70%, more preferably up to 50%, by weight of an oil phase, to which active ingredients can be added. This approach allows simple mixing of all ingredients, without the need for sub-phases or any special processing, to create a formulated cosmetic product. Nevertheless, there still remains an ever-increasing need to offer formulators more flexibility in controlling and fine tuning the properties of the final product, and to allow the formulators to use dispersions at their convenience.
SUMMARY OF THE INVENTION
The present invention addresses a need in the art by providing a process for preparing an advanced cosmetic product comprising the step of contacting a high internal phase ratio (HIPR) emollient-in-water emulsion with a partial cosmetic formulation to produce the advanced cosmetic product.
The process of the present invention reduces significantly the amount of water initially added to the formulated product, thereby providing a distinct advantage to the formulator for controlling the texture, sensation, consistency, shelf stability, and deliverability of active agents of the cosmetic product.
In a second aspect, the present invention is a composition comprising an HIPR silicone elastomer-in-water emulsion.
In a third aspect, the present invention is a composition comprising an HIPR sunscreen agent-in-water emulsion, wherein the sunscreen agent contains at least one chromophoric group absorbing in the ultraviolet range from 290 to 400 nm.
DETAILED DESCRIPTION OF THE INVENTION
In the process of the present invention, a high internal phase ratio (HIPR) emollient-in-water emulsion is contacted with a partial cosmetic formulation to produce an advanced cosmetic product. In general, HIPR emulsions are characterized by a disperse phase of polyhedral cells at a volume fraction of at least 74% (the most compact arrangement of spheres of equal radius) dispersed in a continuous phase that forms a thin film separating the cells.
As used herein, the word “emollient” refers to one or more water-immiscible substances used in cosmetic formulations; the term “water-immiscible substance” refers to a compound capable of forming an HIPR emulsion with water. Examples of emollients include i) mineral oil, petrolatum, polydecene, and isohexadecane; ii) fatty acids and alcohols having from 10 to 30 carbon atoms such as pelargonic, lauric, myristic, palmitic, steraric, isostearic, hydroxystearic, oleic, linoleic, ricinoleic, arachidic, behenic, and euricic acids and alcohols; iii) triglyceride esters such as castor oil, cocoa butter, safflower oil, sunflower oil, jojoba oil, cottonseed oil, corn oil, olive oil, cod liver oil, almond oil, avocado oil, palm oil, sesame oil, squalene, Kikui oil, and soybean oil; iv) acetoglyceride esters such as acetylated monoglycerides; v) ethoxylated glycerides such as ethoxylated glyceryl monostearate; vi) alkyl esters of fatty acids having 10 to 20 carbon atoms such as hexyl laurate, isohexyl laurate, isohexyl palmitate, isopropyl palmitate, decyl oleate, isodecyl oleate, hexadecyl stearate, decyl stearate, diisopropyl adipate, diisohexyl adipate, diisopropyl sebacate, laurly lactate, myristyl lactate, and cetyl lactate; vii) alkenyl esters of fatty acids having 10 to 20 carbon atoms such as oleyl myristate, oleyl stearate, and oleyl oleate; viii) fatty acid esters of ethoxylated fatty alcohols; ix) polhydric alcohol esters such as ethylene glycol mono and di-fatty acid esters, diethylene glycol mon- and di-fatty acid esters, and polyethylene glycol (200-6000) mon- and di-fatty acid esters; x) wax esters such as beeswax, spermaceti, myristyl myristate, and stearyl stearate; xi) silicone oils such as dimethicones and cyclomethicones.
Silicone elastomers constitute yet another class of emollients. These elastomers are advantageously prepared from the crosslinking reaction of a divinyl compound and a polysiloxane compound containing Si—H groups. Examples of commercially available silicone elastomers include General Electric Silicone 1229 (available from General Electric Company) and DC 9040 elastomer (available from Dow Corning Corporation, Midland, Mich.).
For the purposes of the present invention, sunscreen agents are also emollients. A sunscreen agent contains at least one chromophoric group that absorbs in the ultraviolet range of from 290 to 400 nm. Examples of chromophoric organic sunscreen agents include p-aminobenzoic acid as well as salts and esters thereof; o-aminobenzoic acid and o-aminobenzoates (including methyl, menthyl, phenyl, benzyl, phenylethyl, linalyl, terpinyl, and cyclohexenyl esters thereof); salicylic acid and salicylates (including octyl, amyl, phenyl, benzyl, menthyl, glyceryl, and dipropyleneglycol esters thereof); cinnamic acid and derivatives thereof (including menthyl and benzyl esters, alpha-phenyl cinnamonitrile, and butyl cinnamoyl pyruvate); dihydroxycinnamic acid and its derivatives; trihydroxycinnamic acid and its derivatives; diphenylbutadiene and stilbene; dibenzalacetone and benzalacetophenone; naphthosulfonates (such as sodium salts of 2-naphthol-3,6-disulfonic acid and 2-naphthnol-6,8-disulfonic acid); dihydroxynaphthoic acid and its salts; o- and p-hydroxydiphenyldisulfonates; coumarin and derivatives thereof (such as 7-hydroxy, 7-methyl, and 3-phenyl coumarin); diazoles; quinine salts; quinoline and derivatives thereof; hydroxy- or alkoxybenzophenones; uric and vilouric acids; tannic acid and derivatives thereof; hydroquinone; benzophenones (such as oxybenzone, sulisobenzone, dioxybenzone, benzoresorcinol, 2,2′,4,4′-tetrahydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, octabenzone, 4-isopropyldibenzoylmethane, butylmethoxydibenzoylmethane, etocrylene, and 4-isopropyl-dibenzoylmethane).
Examples of commercially available sunscreen agents are listed in the following table. CTFA refers to Cosmetics, Toiletries, and Fragrances Association.
CTFA Name
Trade Name
Supplier
Benzophenone-3
UVINUL M-40
BASF Chemical Co.
Benzophenone-4
UVINUL MS-40
BASF Chemical Co.
Benzophenone-8
SPECTRA-SORB UV-24
American Cyanamid
DEA-Methoxycinnamate
BERNEL HYDRO
Bernel Chemical
Ethyl dihydroxypropyl
AMERSCREEM P
Amerchol Corp.
PABA
Glyceryl PABA
NIPA G.M.P.A.
Nipa Labs.
Homosalate
KEMESTER HMS
Humko Chemical
Menthyl Anthranilate
SUNAROME UVA
Felton Worldwide
Octocrylene
UVINUL N-539
BASF Chemical Co.
Octyl dimethyl PABA
AMERSCOL
Amerchol Corp.
Octyl methoxycinnamate
PARSOL MCX
Bernel Chemical
PABA
PABA
National Starch
2-Phenylbenzimidazole-
EUSOLEX 6300
EM Industries
5-sulfonic acid
TEA salicylate
SUNAROME W
Felton Worldwide
2-(4-Methylbenzildene)-
EUSOLEX 6300
EM Industries
camphor
Benzophenone-1
UVINUL 400
BASF Chemical Co.
Benzophenone-2
UVINUL D-50
BASF Chemical Co.
Benzophenone-6
UVINUL D-49
BASF Chemical Co.
Benzophenone-12
UVINUL 408
BASF Chemical Co.
4-Isopropyl dibenzoyl
EUSOLEX 8020
EM Industries
methane
Etocrylene
UVINUL N-35
BASF Chemical Co.
The HIPR sunscreen-in-water emulsion advantageously includes a stabilizing amount of an additive to prevent Ostwald ripening, that is, to prevent diffusion of the sunscreen active disperse phase from small droplets of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing a cosmetic formulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing a cosmetic formulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing a cosmetic formulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281461

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.