Process for preparing a branched olefin, a method of using...

Organic compounds -- part of the class 532-570 series – Organic compounds – Sulfate esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S155000, C585S513000

Reexamination Certificate

active

06765106

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a process for preparing a branched olefin, to a method of using the branched olefin for making a surfactant, and to the surfactant per se.
BACKGROUND OF THE INVENTION
U.S. Pat. No. 5,849,960 relates to surfactant sulfates based on branched alcohols. The branched alcohols in question have an average number of branches per molecule chain of at least 0.7. The branching comprises not only methyl branching but also ethyl branches, whilst the occurrence of longer branching is not excluded. The branched alcohols are made from branched olefins, which are made by skeletally isomerizing linear olefins. The surfactant sulfates of U.S. Pat. No. 5,849,960 simultaneously satisfy requirements for biodegradability, cold water solubility and cold water detergency.
The market always asks for improvements in the performance of existing detergent formulations, inter alia by improving the surfactants present in the detergent formulations. For example, the laundry market asks for improvements in the surfactants=biodegradability, their cold water solubility and their cold water detergency. At least an improvement is sought in the balance of the properties. By the terminology “an improvement in the balance of the properties” it is meant that at least one property is improved, whilst at least one of the other properties is not deteriorated.
The present invention seeks to provide improvements in the performance of the surfactant sulfates of U.S. Pat. No. 5,849,960, or at least in an improvement in the balance of their performance properties. Relevant performance properties are biodegradability, cold water solubility and cold water detergency, for example cold water detergency in water of low hardness and in water of high hardness. Other relevant performance properties are the compatibility of the surfactant sulfates with other components present in detergent formulations, as described hereinafter, in particular, the compatibility with enzymes, i.e. the inability of the surfactant sulfates to denature enzymes during storage in an aqueous medium. Again other relevant performance properties, in particular for personal care applications, are mildness to the skin and to the eyes and the ability of high foaming, preferably providing foam with a fine structure of the foam cells. Further, an improved performance is sought as a chemical for enhanced oil recovery applications and for the removal of oil spillage, viz. an improved ability to emulsify oil/water, and oil/brine systems and to stabilize emulsions of oil and water or brine, in particular at high temperature. Independently, the present invention seeks to provide a method for the manufacture of surfactant sulfates which is more versatile and economically more attractive than the method known from U.S. Pat. No. 5,849,960. In analogy, the invention seeks to provide similar improvements with respect to anionic surfactants, non-ionic surfactants and cationic surfactants, other than the surfactant sulfates mentioned hereinbefore, and their methods of manufacture.
SUMMARY OF THE INVENTION
In accordance with this invention surfactant sulfates are prepared by dehydrogenating selected branched paraffins to produce branched olefins. These branched olefins can be converted into branched alcohols and subsequently into surfactant sulfates. Alternatively, the branched olefins can be converted into other surfactant types, in particular anionic surfactants other than the surfactant sulfates, such as surfactant sulfonates; nonionic surfactants and cationic surfactants. It is an advantage of this invention that surfactants and intermediates can be made with a very low content of molecules, which have a linear carbon chain. It is another advantage of the invention that products can be made of which the molecules have a low content of branches having three or more carbon atoms. It is also an advantage of the invention that products can be made of which the molecules have a low content of quaternary aliphatic carbon atoms. Without wishing to be bound by theory, it is believed that the presence of quaternary aliphatic carbon atoms in the molecules of the surfactants prevents to some extent their biodegradation and the presence of quaternary aliphatic carbon atoms in the isoparaffinic composition is therefore preferably avoided. In fact, it has been determined that the presence of 0.5% or less quaternary aliphatic carbon atoms in the molecules of the surfactants renders the surfactants substantially more biodegradable.
Accordingly, the present invention provides a process for preparing branched olefins which process comprises dehydrogenating an isoparaffinic composition over a suitable catalyst which isoparaffinic composition comprises paraffins having a carbon number in the range of from 7 to 35, of which paraffins at least a portion of the molecules is branched, the average number of branches per paraffin molecule being at least 0.7 and the branching comprising methyl and optionally ethyl branches.
The invention also provides a method of using olefins for making an anionic surfactant, a nonionic surfactant or a cationic surfactant, in particular a surfactant sulfate or sulfonate, comprising converting branched olefins into the surfactant which branched olefins have been obtained in accordance with this invention.
Further, the invention provides a process for preparing alcohol sulfates, comprising converting branched olefins into branched alcohol sulfates which branched olefins have been obtained in accordance with this invention.
In a further aspect the present invention provides a branched olefin composition comprising olefins having different, consecutive carbon numbers in the range of from 7 to 35, of which olefins at least a portion of the molecules is branched, the average number of branches per molecule being at least 0.7 and the branching comprising methyl and optionally ethyl branches.
In again a further aspect the present invention provides a branched alcohol composition which is obtainable by a process comprising reacting branched olefins according to this invention with carbon monoxide and hydrogen. In again a further aspect the present invention provides an anionic surfactant, a nonionic surfactant and a cationic surfactant, in particular a surfactant sulfate or sulfonate, which is obtainable by a method of use in accordance with this invention.
In again a further aspect the present invention provides an isoparaffinic composition comprising paraffins having different, consecutive carbon numbers in the range of from 7 to 35, of which paraffins at least a portion of the molecules is branched, the average number of branches per paraffin molecule being at least 1.5 and the branching comprising methyl and optionally ethyl branches.
In again a further aspect the invention provides a branched olefin composition which is obtainable in accordance with this invention.
Without wishing to be bound by theory, it is believed that any improvement in the performance properties of the surfactant sulfates prepared in accordance with this invention, compared with the surfactant sulfates specifically known from U.S. Pat. No. 5,849,960, resides in a difference in the distribution of branching along the respective paraffinic chains. Such differences in the distribution of branching are truly unexpected in view of the prior art and, therefore, they are inventive.
DETAILED DESCRIPTION OF THE INVENTION
As described herein, the isoparaffinic composition and the compositions of branched olefins and alcohols derived therefrom are generally mixtures comprising molecules with different, consecutive carbon numbers. Typically at least 75% w, more typically at least 90% w, of these compositions represent a range of molecules of which the heaviest molecules comprises at most 6 carbon atoms more than the lightest molecules.
The isoparaffinic composition comprises paraffins having a carbon number in the range of from 7 to 35, of which paraffins at least a portion of the molecules is branched. Preferably, the isoparaffinic composition comprise

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing a branched olefin, a method of using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing a branched olefin, a method of using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing a branched olefin, a method of using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3253188

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.