Process for preparing 4-aminodiphenylamine intermediates

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C564S421000, C564S422000, C564S423000, C564S398000, C564S397000, C564S408000, C564S433000, C564S434000

Reexamination Certificate

active

06395933

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for preparing 4-aminodiphenyl-amines intermediates.
2. Related Art
4-Aminodiphenylamines are widely used as intermediates in the manufacture of alkylated derivatives having utility as antiozonants and antioxidants, as stabilizers for monomers and polymers, and in various specialty applications. For example, reductive alkylation of 4-aminodiphenylamine (4-ADPA) with methylisobutyl ketone provides N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylene-diamine, which is a useful antiozonant for the protection of various rubber products.
4-Aminodiphenylamine derivatives can be prepared in various ways. An attractive synthesis is the reaction of an optionally substituted aniline with an optionally substituted nitrobenzene in the presence of a base, as disclosed, for example, in U.S. Pat. No. 5,608,111 (to Stern et al.) and U.S. Pat. No. 5,739,403 (to Reinartz et al.).
U.S. Pat. No. 5,608,111 describes a process for the preparation of an optionally substituted 4-ADPA wherein in a first step optionally substituted aniline and optionally substituted nitrobenzene are reacted (coupled) in the presence of a base. In working examples, aniline and nitrobenzene are reacted in the presence of tetramethylammonium hydroxide as the base, and water and aniline are azeotropically removed during the coupling reaction.
International publication WO 00/35853 discloses a method of preparation of intermediates of 4-aminodiphenylamine by the reaction of aniline with nitrobenzene in a liquid medium where the reaction system consists of a solution of salts of true zwitterions with hydroxides. A combination of potassium hydroxide and betaine hydrate is exemplified. The reaction may take place in the presence of free oxygen.
EP publication 566 783 describes a method of manufacture of 4-nitrodiphenylamine by the reaction of nitrobenzene with aniline in the medium of a polar aprotic solvent in a strongly alkaline reaction system. A phase transfer catalyst such as tetrabutylammonium hydrogen sulfate is employed. This reference requires that the reaction be carried out in an oxygen-free atmosphere in order to prevent undesirable side reactions caused by oxidation.
U.S. Pat. No. 5,117,063 and International publication WO 01/14312 disclose processes processes for preparing 4-nitrodiphenylamine and 4-nitrosodiphenhlamine, using an inorganic base with crown ether, a phase transfer catalyst.
The objective of the present invention is to provide a superior method for producing one or more 4-ADPA intermediates by reacting aniline and nitrobenzene in the presence of a strong base and a phase transfer catalyst.
SUMMARY OF THE INVENTION
In brief summary, the primary embodiment of the present invention is for a method of producing one or more 4-aminodiphenylamine intermediates comprising the steps of:
(a) bringing an aniline or aniline derivative and nitrobenzene into reactive contact; and
(b) reacting the aniline and nitrobenzene in a confined zone at a suitable time and temperature, in the presence of a mixture comprising a strong base, an oxidant and a phase transfer catalyst selected from the group of compounds defined by (b) reacting the aniline and nitrobenzene in a confined zone at a suitable time and temperature, in the presence of a mixture comprising a strong base, an oxidant, and a phase transfer catalyst selected from the group of compounds defined by:
 where R
1
, R
2
, R
3
are the same or different and selected from any straight chain or branched alkyl group containing from C
1
to C
20
, (R
4
)
e
is hydrogen for e=0, R
4
is R
1
R
2
R
3
N
+
for e=1 or 2, Y is alkyl, aryl , alkyl aryl or benzyl and substituted derivatives thereof, Z is a substituent selected from the group consisting of hydroxyl, halo, and other hetero atoms, X is an anionic moiety of the form fluoride, chloride, hydroxide, sulfate, hydrogensulfate, acetate, formate, nitrate, phosphate, hydrogen phosphate, dihydrogenphosphate, oxalate, carbonate, borate, tartrate, citrate, malonate and mixtures of said compounds, where a=the valence of the anionic moiety (1, 2 or 3), b and c are whole number integers of value 1, 2 or 3 and d is a whole number integer of value 0 to 4.
Other embodiments of the present invention encompass details about reaction mixtures and ratios of ingredients, particular phase transfer catalysts and particular strong bases, all of which are hereinafter disclosed in the following discussion of each of the facets of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to a method, as described above, for making intermediates of 4-ADPA that has superior yield and selectivity for those intermediates. Such intermediates comprise 4-nitroso- and/or 4-nitrodiphenylamines (p-NDPA and 4-NDPA, respectively) and salts thereof. The intermediates may then be hydrogenated to produce 4-aminodiphenylamine.
An example of a substituted and multifunctional phase transfer catalyst that is consistent with the above formula I is (2S, 3S)-bis(trimethylammonio)-1,4-butanediol dichloride. Other effective phase transfer catalysts fitting formula 1, in addition to those shown in the following examples, can be derived from examples in the literature, such as C. M. Starks and C. Liotta, Phase Transfer Catalysis, Principles and Techniques, Academic Press, 1978 and W. E. Keller, Fluka-Compendium, Vol. 1,2,3, Georg Thieme Verlag, New York, 1986, 1987, 1992.
Phase transfer catalysts known or believed to be particularly effective in the method of the invention include tetramethylammonium chloride, tetramethylammonium fluoride, tetramethylammonium hydroxide, bis-tetramethylammonium carbonate, tetramethylammonium formate and tetramethylammonium acetate; tetrabutylammonium hydrogensulfate and tetrabutylammonium sulfate; methyltributylammonium chloride; and benzyltrimethylammonium hydroxide (Triton B), tricaprylylmethylammonium chloride (Aliquat 336), tetrabutylammonium chloride, tetramethylammonium nitrate, cetyltrimethylammonium chloride and choline hydroxide .
Phase transfer catalysts of the present invention have several advantages over crown ethers, such as 18-crown-6, which were described as effective with alkali metal hydroxides in references such as U.S. Pat. No. 5,117,063 and International publication WO 01/14312 discussed above. The most obvious disadvantages of crown ethers are very high initial cost and high toxicity. In addition, most crown ethers have poor solubility in water, so they cannot be recovered for recycle with an aqueous base stream. Furthermore, the boiling points of crown ethers are high enough that they cannot be recovered by distillation without an extra distillation step. Even for the class of crown ethers that have good solubility in water, solubility in organics is also good, so that there will be a high loss to the organic product stream. Finally, crown ethers are known chelating agents, so that there is a high probability of unacceptable loss of expensive hydrogenation catalyst metal, due to complexation with the crown ether.
In the method of the invention, the molar ratio of phase transfer catalyst to nitrobenzene reactant is preferably from about 0.05:1 to about 1.2:1.
While aniline most effectively couples with nitrobenzene, certain aniline derivatives comprising amides such as formanilide, phenylurea and carbanilide as well as the thiocarbanilide can be substituted to produce 4-ADPA intermediates.
Although the reactants of the method of the invention are referred to as “aniline” and “nitrobenzene”, and when it is 4-ADPA that is being manufactured the reactants are in fact aniline and nitrobenzene, it is understood that the reactants may also comprise substituted aniline and substituted nitrobenzene. Typical examples of substituted anilines that may be used in accordance with the process of the present invention include but are not limited to 2-methoxyaniline, 4-methoxy-aniline, 4-chloroaniline, p-toluidine, 4-nitroaniline, 3-bromoaniline, 3-bromo-4-aminotoluen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing 4-aminodiphenylamine intermediates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing 4-aminodiphenylamine intermediates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing 4-aminodiphenylamine intermediates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2840675

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.