Process for microencapsulating cells

Chemistry: molecular biology and microbiology – Carrier-bound or immobilized enzyme or microbial cell;... – Enzyme or microbial cell is immobilized on or in an organic...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S004320, C264S004330, C427S002140, C424S488000, C424S497000, C424S499000, C435S182000, C514S891000

Reexamination Certificate

active

06242230

ABSTRACT:

BACKGROUND OF THE INVENTION
Microencapsulation is the process of enveloping certain drugs, enzymes, toxins, or other substances in polymeric matrices. It can be used in controlled release or delayed release of drugs. The many applications, available matrices, and techniques are extensively covered elsewhere (see, for example, Chang, T. M. S. [1977
] Biomedical applications of immobilized enzymes and proteins, Vols.
1-2,
New York: Plenum Press
; Deasy, P. B. (ed.) [1984] “Microencapsulation and related drug processes,” In J. Swarbrick (ed.),
Drugs and the pharmaceutical sciences: Vol
20.
Microencapsulation and related drug processes
, New York: Marcel Dekker, Inc.; McGinity, J. W. [1989] “Aqueous polymeric coatings for pharmaceutical dosage forms,”
Drugs and the Pharmaceutical Sciences
36; Nixon, J. R. (ed.) [1976] “Microencapsulation,” In J. Swarbrick (ed.)
Drugs and the pharmaceutical sciences: Vol.
3, New York, Marcel Dekker, Inc.).
Polymeric matrix microencapsulation of microorganisms is a relatively new technology which has potentially major implications in the treatment of various afflictions. Examples of afflictions in which treatment involving microcapsules could be advantageous are diabetes and urinary stone diseases. Insulin dependent diabetes mellitus IDDM) is a severe disease which afflicts millions of Americans, causing substantial disruption of lifestyle and often resulting in severe health problems. The exact causes of IDDM have remained largely a mystery, despite years of intensive research on this disease. It is now widely recognized that IDDM is an autoimmune condition whereby the body's natural immunological defenses destroy the &bgr;-cells of the pancreas. &bgr;-cells are responsible for the production of insulin, and, once a substantial portion of the &bgr;-cells are destroyed, those individuals afflicted with the disease must rely on exogenous sources of insulin, usually in the form of injections. The success of pancreas or islet cell transplantations is very limited because of immune responses typically mounted by the recipient against the foreign cells.
Urolithiasis, or urinary stone disease, is a common urinary tract problem afflicting more than 10% of the U.S. population. Urinary tract stones are usually classified according to their composition, with the most frequently encountered (70%) being the calcium stone composed of calcium oxalate alone or calcium oxalate mixed with calcium phosphate. Although precipitation of calcium oxalate depends on a urine saturated with both calcium and oxalate ions in a metastable state, it has been argued that the oxalate ion concentration is more significant in the formation of urinary calcium oxalate stones. Thus, the management of oxalate in individuals susceptible to urolithiasis would seem especially important. The majority of oxalate in plasma and urine is derived from the endogenous metabolism of ascorbic acid, glyoxylate, and to a lesser degree, tryptophan. In addition, between 10% and 20% of the urinary oxalate is absorbed from the diet, especially through ingestion of leafy vegetables and plant materials, although there is disagreement in the literature about the relative amounts of diet and endogenous oxalate. Ingestion of ethylene glycol, diethylene glycol, xylitol, and excess ascorbic acid can lead through metabolic conversions to disorders of excess oxalate. Use of methoxyflurane as an anaesthetic can also lead to oxalosis. Aspergillosis, infection with an oxalate-producing fungus, can lead to production and deposition of calcium oxalate. Other causes of excess oxalic acid include renal failure and intestinal disease.
It is believed that lowering the oxalate levels in the plasma, and subsequently the urine, would decrease the incidence of calcium oxalate stone formation. Unfortunately, there are no known naturally occurring oxalate degrading or metabolizing enzymes in vertebrates. Catabolism of oxalic acid appears restricted to the plant kingdom.
Hyperoxaluria can also be related to genetic disorders. Primary hyperoxaluria is a general term for an inherited disorder which reveals itself in childhood and progresses to renal failure and frequently death in adolescence. It is characterized by high urinary excretion of oxalate and recurring calcium oxalate kidney stones. Primary hyperoxalurias consist of two rare disorders of glyoxylate and hydroxypuruvate metabolism. There are no satisfactory treatments for the two types of primary hyperoxaluria. Hemodialysis and renal transplantation have not been successful in halting the progress of this disease. Controlled diet has also failed to stop the complications of primary hyperoxaluria Primary hyperoxaluria eventually leads to other abnormalities such as urolithiasis, nephrocalcinosis with renal failure, systemic oxalosis, and oxalemia.
Oxalate toxicity can also cause livestock poisoning, due to grazing on oxalate-rich pastures. Ingestion of oxalate-rich plants such as Halogeton glomeratus, Bassia hyssopifolia, Oxalis pes-caprae, and Setaria sphacelata, or grains infected with the oxalate-producing fungi Aspergillus niger, has been reported to cause oxalate poisoning in sheep and cattle. Chronic poisoning is often accompanied by appetite loss and renal impairment. Acute toxicity can lead to tetany, coma, and death (Hodgkinson, A. [1977
] Oxalic acid in biology and medicine
, London: Academic Press, pp. 220-222).
Three mechanisms for oxalate catabolism are known: oxidation, decarboxylation, and activation followed by decarboxylation (Hodgkinson, A. [1977], supra at 119-124). Oxalate oxidases are enzymes that are found in mosses, higher plants, and possibly fungi which catalyze the oxidation of oxalate to hydrogen peroxide plus carbon dioxide: (COOH)
2
+O
2
→2CO
2
+H
2
O
2
. Oxalate decarboxylases are enzymes which produce CO
2
and formate as products of oxalate degradation. An O
2
-dependent oxalate decarboxylase found in fungi catalyzes the decarboxylation of oxalic acid to yield stoichiometric quantities of formic acid and CO
2
: (COOH)
2
→CO
2
+HCOOH. Varieties of both aerobic and anaerobic bacteria can also degrade oxalic acid. An activation and decarboxylation mechanism is used for degradation of oxalate in Pseudomonas oxalaticus and other bacteria. The many pathways leading to oxalate are discussed elsewhere (Hodgkinson, A. [1977] supra; Jacobsen, D. et al. [1988
] American Journal of Medicine
84:145-152).
Oxalobacter formigenes is a recently described oxalate-degrading anaerobic bacterium which inhabits the rumen of animals as well as the colon of man (Allison, M. J. [1985
] Arch. Microbiol.
141:1-7). O. formigenes OxB is a strain that grows in media containing oxalate as the sole metabolic substrate. Other substrates do not appear to support its growth. The degradation of oxalate catalyzed by the bacterial enzyme results in CO
2
and formic acid production (Allison [1985], supra).
Recently, research has focused on matrices used to encapsulate cells and organisms. The use of alginate gel technology to formulate agricultural products, pesticides, and food items has been disclosed. For example, U.S. Pat. No. 4,053,627 describes the use of alginate gel discs for mosquito control; U.S. Pat. No. 3,649,239 discloses fertilizer compositions; and U.S. Pat. No. 2,441,729 teaches the use of alginate gels as insecticidal as well as candy jellies. In addition, U.S. Pat. Nos. 4,401,456 and 4,400,391 disclose processes for preparing alginate gel beads containing bioactive materials, and U.S. Pat. No. 4,767,441 teaches the use of living fungi as an active material incorporated in an alginate matrix.
The most usual hydroxyl polymers used for encapsulating biomaterials are alginate, polyacrylamide, carrageenan, agar, or agarose. Of these, alginate and carrageenan are the only ones which can be manufactured simply in spherical form with encapsulated material. This is done by ionotropic gelling, i.e., the alginate is dropped down into

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for microencapsulating cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for microencapsulating cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for microencapsulating cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2460958

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.