Process for mapping multiple-bounce ghosting artifacts from...

Communications: directive radio wave systems and devices (e.g. – With particular circuit – Display

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S02500R, C342S159000, C342S176000, C342S195000

Reexamination Certificate

active

06646593

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
Generally, the invention involves a process for forming radar images. More specifically, the invention involves a process for mapping multiple bounce ghosts (MBGs) and for forming radar images without the deleterious effects of MBGs.
2. Description of the Related Art
Radar, at its most basic application, is used to measure the range to a target. With knowledge of the speed of propagation of the wave, i.e., electromagnetic wave, that is transmitted toward the target, it is possible to resolve in a first dimension, the distance to the target, based on the received reflected wave or echo. In order to use radar as an imaging tool, it is necessary to collect information about the cross-range of the target, in addition to the first dimension information. This cross-range information is about a second dimension perpendicular to the first dimension.
Synthetic aperture radar (SAR) can be used to collect data in both the first and second dimensions, through a process wherein the reflected waves are measured at different angles with respect to an object-of-interest. This process is referred to in the art as collecting radar measurements over a synthetic (as opposed to a literal) aperture. By taking various measurements of the object-of-interest from varying aspect angles, it is possible to determine approximate distance to the scattering centers within an object-of-interest in the first dimension and location of these scattering centers within the object-of-interest in the second, cross-range dimension. This process of two-dimensional imaging is commonly referred to as reflection tomography.
SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high-resolution imagery. SAR imaging is not restricted by time of day or atmospheric conditions due to its operative frequencies. Consequently, SAR imaging supplements other photographic and optical imaging techniques in order to facilitate environmental monitoring, earth-resource mapping, and military operations which may require broad-area imaging at high resolutions. More specifically, SAR technology provides detailed terrain information to geologists for mineral exploration, environmentalists for determination of oil spill boundaries, navigators for sea state and ice hazard mapping, and the military for reconnaissance and targeting information.
Other systems using reflection data, also referred to as projection measurements, are fault inspection systems using acoustic imaging, submarine sonar for imaging underwater objects and the like, seismic imaging system for tunnel detection, oil exploration, geological surveys, etc., and medical diagnostic tools such as sonograms and echocardiograms.
There have been two basic types of processing techniques used in the field of reflection tomography to reconstruct single-bounce (SB) reflection data. First, the frequency-domain projection-slice theorem takes the measured phase history from the reflection data taken at different aspect angles and generates the reconstruction of an image using Fourier transforms. This reconstruction technique is often used for reconstructing SAR image data in order to minimize the computational load that results from necessarily complex processing. A second technique, more prevalent in the medical imaging community, is based on the time-domain back projection techniques. Both of these techniques are discussed in U.S. Pat. No. 5,805,098 to McCorkle which is incorporated herein by reference in its entirety.
SUMMARY OF THE INVENTION
Summary of the Problem
The reflection data processing techniques described in the related art assume that the impinging wave reflects a single time off of the object of interest before returning back to the receiver. This assumption neglects the situation wherein the wave actually reflects off of multiple portions of the object of interest, cascading for any number of times, before returning to the receiver. All prior art on reflection tomography assumes only one bounce. That is, conventional tomography does not include the effects of multiple-bounce (MB) scattering events wherein the mediating waveform first scatters off of one portion of the extended object-of-interest, which then scatters in a cascade fashion off of one or more other regions of this same extended object-of interest or off of other objects before scattering into the receiver. These facts motivate the need for the development of a modified image formation process that applies for cases in which the measured reflection data also identifies and accounts for MB scattering events.
A particular imaging scenario wherein the prior art process is insufficient includes determining the physical distribution of the scattering centers for cases in which multiple-bounce echoes occur. For example, prior art processes would have a difficult time determining from three (3) received echoes that instead of three scattering centers for an object-of-interest, the image actually contained two targets, wherein the third echo was between the two scattering centers as opposed to a third scattering center. The problem is exacerbated in a case where there are many scattering centers within the image, with the possibility for multiple bounces between the scattering centers. Further, in the case of SAR imaging, the process becomes even more complicated by the fact that the object (or region)-of-interest radar information is only gathered over a very small aspect angle range, for example, up to approximately 15 degrees. Current processing schemes place the multiple-bounce echoes at incorrect (ghost) locations due to fundamental assumptions implicit in the processing.
Summary of the Solution
Described herein are frequency-domain back-projection processes for forming, e.g spotlight SAR images that are not corrupted by the effects of multiple-bounce ghosting artifacts. These processes give an approximately exact reconstruction of the multiple bounce reflectivity function (MBRF) ƒ(x,y,&ggr;). As shown in the embodiments herein, the reconstruction process is not affected to any greater extent by noise and interference than in the case of the single bounce processing. Specifically, the evaluation of ƒ(x,y,&ggr;) in the &ggr;=0 plane gives an approximately exact reconstruction of the true object scattering centers which is uncorrupted by multiple-bounce contributions to the phase history data G(&xgr;,&thgr;). In addition, the non-zero dependence of ƒ(x,y,&ggr;) upon the MB coordinate &ggr; can be used to facilitate the identification of features-interest within the imaged region.
In an embodiment of the present invention, a process is described for incorporating the effects of multiple bounces obtained using the back projection imaging process referred to herein, in order to obtain a cleaned up image that has removed the misleading effects of the multiple bounces, commonly referred to as multiple bounce ghosts (MBGs). The process identifies the MBGs and maps the MBG reflections into a metrically-correct image plane, also referred to as, a delay image plane or higher dimensional image plane, creating auxiliary images, which are useful in providing further information about the viewing region, including additional discriminating information that could assist in object recognition and identification. The imaging information, including both single and multiple bounce information, is only required for a narrow range of measurement angles.
The processes of the present invention are useful in three dimensional imaging, providing images that are free of multi-path effects, and extending the field-of-use of the technology beyond SAR imaging to all areas of reflection tomography. Because the technology incorporates a physical model that explicitly allows for multi-bounce effects in image formation, it is applicable to any image formation technology where that phenomenon is found such as, but not limited to, real aperture radar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for mapping multiple-bounce ghosting artifacts from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for mapping multiple-bounce ghosting artifacts from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for mapping multiple-bounce ghosting artifacts from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3122007

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.