Semiconductor device manufacturing: process – Making device or circuit responsive to nonelectrical signal – Responsive to electromagnetic radiation
Reexamination Certificate
2000-11-27
2002-11-12
Fourson, George (Department: 2823)
Semiconductor device manufacturing: process
Making device or circuit responsive to nonelectrical signal
Responsive to electromagnetic radiation
C438S051000, C438S059000, C438S065000, C438S066000, C216S002000
Reexamination Certificate
active
06479315
ABSTRACT:
FIELD OF THE INVENTION
Micromechanical and microoptomechanical structures fabricated on silicon-on-insulator (SOI) wafers are described. More particularly micromechanical and mircooptomechanical components created by chemically and mechanically modifying SOI wafers and metalizing a backside of the components are described.
BACKGROUND
Inherent thin film properties of materials limit many surface micromachining processes. For example, variability of materials properties in polysilicon thin films (such as Young's modulus and Poisson's ratio, residual stress, and stress gradients) can prohibit manufacture of desired microstructure This is particularly apparent in microoptical components such as mirrors, lenses, and diffraction gratings, which must be very flat for high-optical performance, and normally have to be made in the single crystal silicon layer. Since conventional surface micromachining requires that all components be made in polysilicon layers, optical performance can be limited.
The leading commercial microelectromechanical (MEMS) processing technologies are (1) bulk micromachining of single crystal silicon, and (2) surface micromachining of polycrystalline silicon. Each of these processing technologies has associated benefits and barriers. Bulk micromachining of single crystal silicon, an excellent material with well-controlled electrical and mechanical properties in its pure state, has historically utilized wet anisotropic wet etching to form mechanical elements. In this process, the etch rate is dependent on the crystallographic planes that are exposed to the etch solution, so that mechanical elements are formed that are aligned to the rate limiting crystallographic planes. For silicon these planes are the (1,1,1) crystal planes. The alignment of mechanical features to the crystallographic planes leads to limitations in the geometries that can be generated using this technique. Typical geometries include v-groove trenches and inverted pyramidal structures in (1,0,0) oriented silicon wafers, where the trenches and inverted pyramids are bound by (1,1,1) crystallographic planes. Geometries that include convex comers are not allowed unless additional measures are taken to protect etching of the crystal planes that make up the comers. The etch rate also varies with dopant concentration, so that the etch rate can be modified by the incorporation of dopant atoms, which substitute for silicon atoms in the crystal lattice. A boron dopant concentration on the order of 5×10
19
/cm
3
is sufficient to completely stop etching, so that mechanical elements bounded by other crystal planes can be generated by using dopant “etch stop” techniques. However, dopant concentrations of this magnitude are sufficient to modify the desirable electrical and mechanical properties of the pure single crystal silicon material, leading to device design and manufacturability constraints. Recent advances in Deep Reactive Ion Etching (DRIE) (see, e.g., J. K. Bhardwaj and H. Ashraf, “Advanced silicon etching using high density plasmas”, Micromachining and Microfabrication Process Technology, Oct. 23-24, 1995, Austin, Tex., SPIE Proceedings Vol. 2639, pg. 224) which utilize sidewall passivation and ion beam directionality to achieve etch anisotropy, have relaxed the in-plane geometric design constraints, but still require etch stop techniques to control the depth of the etch into the wafer, and additional processing steps are required to undercut a structure to release it from the substrate.
In contrast to bulk micromachining, surface micromachining of polycrystalline silicon utilizes chemical vapor deposition (CVD) and reactive ion etching (RIE) patterning techniques to form mechanical elements from stacked layers of thin films (see, e.g., R. T. Howe, “Surface micromachining for microsensors and microactuators”, J. Vac. Sci. Technol. B6, (1988) 1809). Typically CVD polysilicon is used to form the mechanical elements, CVD nitride is used to form electrical insulators, and CVD oxide is used as a sacrificial layer. Removal of the oxide by wet or dry etching releases the polysilicon thin film structures. The advantage of the surface micromachining process is the ability to make complex structures in the direction normal to the wafer surface by stacking releasable polysilicon layers (see, e.g., K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated hinges”, Sensors and Actuators A33, (1992) 249 and L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micromachined three-dimensional micro-optics for free-space optical system”, IEEE Photon. Technol. Lett. 6, (1994) 1445) and complete geometric design freedom in the plane of the wafer since the device layers are patterned using isotropic RIE etching techniques. An additional advantage of surface micromachining is that it utilizes thin film materials such as polysilicon, oxide, nitride, and aluminum, that are commonly used in microelectronic device fabrication, albeit with different materials properties that are optimized for mechanical rather than electrical performance. This commonality in materials allows for increased integration of microelectronic and micromechanical components into the same fabrication process, as demonstrated in Analog Devices' integrated accelerometer, and in SSI Technologies' integrated pressure sensor.
While surface micromachining relaxes many of the limitations inherent in bulk micromachining of single crystal silicon, it nonetheless has its own limitations in thin film properties. The maximum film thickness that can be deposited from CVD techniques are limited to several microns, so that thicker structures must be built up from sequential depositions. Thicker device layers are required for dynamic optical elements where dynamic deformations can impact optical performance, and for optical elements which require additional thin film coatings that can cause stress-induced curvature. The thin film mechanical properties, such as Young's modulus and Poisson's ratio, are dependent on the processing parameters and the thermal history of the fabrication process, and can typically vary by as much as 10% from run to run. This is an important limitation for robust manufacturability where these thin film mechanical properties can be a critical parameter for device performance.
An additional limitation of conventional surface micromachining is that holes through the mechanical elements must be included in the design to allow the etchants used to release the mechanical elements to reach the sacrificial layers. While this is not an important limitation for optical elements such as Fresnel lenses and diffraction grating that include holes in their design, it is an important limitation for optical elements such as mirrors where holes are a detriment to optical performance. Flatness and reflectivity are also important optical design criteria that can be impacted by conventional surface micromachining processes. Thin film stresses and stress gradients, typical of polysilicon thin films, can lead to warping of optical surfaces. In addition the surface of as-deposited polysilicon thin films is not polished, and thus requires post-processing Chemical Mechanical Polishing (CMP) techniques to obtain an optical quality surface finish.
SUMMARY OF THE INVENTION
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilicon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
REFERENCES:
patent: 5476819 (1995-12-01), Warren
patent: 5484073 (1996-01-01), Erickson
patent: 5569355 (1996-10-01), Then et al.
patent: 5589083 (1996-12-01), Ahn et al.
patent: 5645684 (1997-07-01), Keller
patent: 5660680 (1997-08-01), Keller
Chen Jingkuang
Gulvin Peter M.
Kubby Joel A.
Lin Chuang-Chia
Tran Alex T.
Berezny Neal
Blakely , Sokoloff, Taylor & Zafman LLP
Fourson George
Microscan Systems Inc.
LandOfFree
Process for manufacturing micromechanical and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for manufacturing micromechanical and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for manufacturing micromechanical and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2976264